Filtrar por:
Tipo de publicación
- Artículo (122)
- Tesis de maestría (27)
- Objeto de congreso (25)
- Documento de trabajo (13)
- Libro (5)
Autores
- Velitchko Tzatchkov (12)
- CARLOS FUENTES RUIZ (9)
- WALDO OJEDA BUSTAMANTE (9)
- VICTOR HUGO ALCOCER YAMANAKA (8)
- Jelle Van Loon (6)
Años de Publicación
Editores
- Instituto Mexicano de Tecnología del Agua (30)
- El autor (14)
- CICESE (9)
- Colegio de Postgraduados. (5)
- Colegio de Postgraduados (4)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (86)
- Repositorio institucional del IMTA (66)
- Repositorio Digital CIDE (13)
- Repositorio Institucional CICESE (13)
- CIATEQ Digital (5)
Tipos de Acceso
- oa:openAccess (201)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (100)
- INGENIERÍA Y TECNOLOGÍA (58)
- CIENCIAS SOCIALES (31)
- Modelos matemáticos (29)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (20)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Jelle Van Loon (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION SYSTEMS FOOD SYSTEMS AGRIFOOD SYSTEMS DATA PROCESSING
Facundo Tabbita Iván Ortíz-Monasterios Francisco Javier Pinera-Chavez Maria Itria Ibba Carlos Guzman (2023, [Artículo])
BACKGROUND: Continuous development of new wheat varieties is necessary to satisfy the demands of farmers, industry, and consumers. The evaluation of candidate genotypes for commercial release under different on-farm conditions is a strategy that has been strongly recommended to assess the performance and stability of new cultivars in heterogeneous environments and under different farming systems. The main objectives of this study were to evaluate the grain yield and quality performance of ten different genotypes across six contrasting farmers' field conditions with different irrigation and nitrogen fertilization levels, and to develop suggestions to aid breeding programs and farmers to use resources more efficiently. Genotype and genotype by environment (GGE) interaction biplot analyses were used to identify the genotypes with the strongest performance and greatest stability in the Yaqui Valley. RESULTS: Analyses showed that some traits were mainly explained by the genotype effect, others by the field management conditions, and the rest by combined effects. The most representative and diverse field conditions in the Yaqui Valley were also identified, a useful strategy when breeders have limited resources. The independent effects of irrigation and nitrogen levels and their interaction were analyzed for each trait. The results showed that full irrigation was not always necessary to maximize grain yield in the Yaqui Valley. Other suggestions for more efficient use of resources are proposed. CONCLUSIONS: The combination of on-farm trials with GGE interaction analyses is an effective strategy to include in breeding programs to improve processes and resources. Identifying the most outstanding and stable genotypes under real on-farm systems is key to the development of novel cultivars adapted to different management and environmental conditions.
Wheat Quality Bread Wheat Bread-Making CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOFT WHEAT QUALITY FARMING SYSTEMS
CIMMYT seed systems Interventions
AbduRahman Issa (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SYSTEMS VALUE CHAINS POLICIES HYBRIDS MAIZE WOMEN FARMERS
Demonstration of service provider model of solar irrigation system for smallholder farmers
Md Abdul Matin (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA IRRIGATION SMALLHOLDERS IRRIGATION SYSTEMS
Review of Nationally Determined Contributions (NCD) of China from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
China is the largest emitter of greenhouse gases (GHG) and one of the countries most affected by climate change. China's food systems are a major contributor to climate change: in 2018, China's food systems emitted 1.09 billion tons of carbondioxide equivalent (CO2eq) GHGs, accounting for 8.2% of total national GHG emissions and 2% of global emissions. According to the Third National Communication (TNC) Report, in 2010, GHG emissions from energy, industrial processes, agriculture, and waste accounted for 78.6%, 12.3%, 7.9%, and 1.2% of total emissions, respectively, (excluding emissions from land use, land-use change and forestry (LULUCF). Total GHG emissions from the waste sector in 2010 were 132 Mt CO2 eq, with municipal solid waste landfills accounting for 56 Mt. The average temperature in China has risen by 1.1°C over the last century (1908–2007), while nationally averaged precipitation amounts have increased significantly over the last 50 years. The sea level and sea surface temperature have risen by 90 mm and 0.9°C respectively in the last 30 years. A regional climate model predicted an annual mean temperature increase of 1.3–2.1°C by 2020 (2.3–3.3°C by 2050), while another model predicted a 1–1.6°C temperature increase and a 3.3–3.7 percent increase in precipitation between 2011 and 2020, depending on the emissions scenario. By 2030, sea level rise along coastal areas could be 0.01–0.16 meters, increasing the likelihood of flooding and intensified storm surges and causing the degradation of wetlands, mangroves, and coral reefs. Addressing climate change is a common human cause, and China places a high value on combating climate change. Climate change has been incorporated into national economic and social development plans, with equal emphasis on mitigation and adaptation to climate change, including an updated Nationally Determined Contribution (NDC) in 2021. The following overarching targets are included in China's updated NDC: • Peaking carbon dioxide emissions “before 2030” and achieving carbon neutrality before 2060. • Lowering carbon intensity by “over 65%” by 2030 from the 2005 level. • Increasing forest stock volume by around 6 billion cubic meters in 2030 from the 2005 level. The targets have come from several commitments made at various events, while China has explained very well the process adopted to produce its third national communication report. An examination of China's NDC reveals that it has failed to establish quantifiable and measurable targets in the agricultural sectors. According to the analysis of the breakdown of food systems and their inclusion in the NDC, the majority of food system activities are poorly mentioned. China's interventions or ambitions in this sector have received very little attention. The adaptation component is mentioned in the NDC, but is not found to be sector-specific or comprehensive. A few studies have rated the Chinese NDC as insufficient, one of the reasons being its failure to list the breakdown of each sector's clear pathway to achieving its goals. China's NDC lacks quantified data on food system sub-sectors. Climate Action Trackers' "Insufficient" rating indicates that China's domestic target for 2030 requires significant improvements to be consistent with the Paris Agreement's target of 1.5°C temperature limit. Some efforts are being made: for example, scientists from the Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA-CAAS) have developed methods for calculating GHG emissions from livestock and poultry farmers that have been published as an industrial standard by the Ministry of Agriculture and Rural Affairs, PRC (Prof Hongmin Dong, personal communication) but this still needs to be consolidated and linked to China’s NDC. The updated Nationally Determined Contributions fall short of quantifiable targets in agriculture and food systems as a whole, necessitating clear pathways. China's NDC is found to be heavily focused on a few sectors, including energy, transportation, and urban-rural development. The agricultural sectors' and food systems' targets are vague, and China's agrifood system has a large carbon footprint. As a result, China should focus on managing the food system (production, processing, transportation, and food waste management) to reduce carbon emissions. Furthermore, China should take additional measures to make its climate actions more comprehensive, quantifiable, and measurable, such as setting ambitious and clear targets for the agriculture sector, including activity-specific GHG-reduction pathways; prioritizing food waste and loss reduction and management; promoting sustainable livestock production and low carbon diets; reducing chemical pollution; minimizing the use of fossil fuel in the agri-system and focusing on developing green jobs, technological advancement and promoting climate-smart agriculture; promoting indigenous practices and locally led adaptation; restoring degraded agricultural soils and enhancing cooperation and private partnership. China should also prepare detailed NDC implementation plans including actions and the GHG reduction from conditional targets.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GREENHOUSE GAS EMISSIONS CLIMATE CHANGE FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Sieglinde Snapp Yodit Kebede Eva Wollenberg (2023, [Artículo])
A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FOOD SUPPLY GAS EMISSIONS GREENHOUSE GASES FARMING SYSTEMS AGROECOLOGY FOOD SECURITY LESS FAVOURED AREAS SMALLHOLDERS YIELDS NUTRIENTS BIOLOGICAL PEST CONTROL CARBON SEQUESTRATION LEGUMES
RODRIGO MENDEZ ALONZO Mark Olson Horacio Paz Casandra Reyes García CELENE MARISOL ESPADAS MANRIQUE CLARA TINOCO OJANGUREN Santiago Trueba (2022, [Artículo])
Given the outstanding global progress of research on the hydraulic pathway in plants, and its important role as an indicator of plant mortality risk, we reviewed: (1) the adaptive basis of hydraulic traits and their importance for overall plant function; (2) the number of primary scientific articles on plant hydraulics that have been produced in Mexico in the last 40 years, (3) research related to specific environments in Mexico, and (4) the possible applications of plant hydraulics to natural resource management. Our systematic review included 83 articles. The number of publications per year steadily increased over time, reaching its maximum in 2021. Veracruz and Yucatán are the states where the majority of scientific articles on plant hydraulics have been produced, but for most states less than two publications on this subject appeared in ca. 40 years, and none was found for Oaxaca and Chiapas, the most biodiverse states. In plant hydraulics, the most studied biome in Mexico was the tropical dry forest, followed by crops; trees were the most studied growth-form, followed by herbaceous crops and epiphytes. We point to the need of enhancing research in the interface between plant hydraulic function and remote sensing, as well as developing applications in adaptive forest management and ecological restoration. We hope that this review may ignite a national collaborative effort to quantify critical traits that could inform the hydraulic functioning of Mexican ecosystems, particularly in the underrepresented and highly diverse states of Mexico. © 2022 Sociedad Botanica de Mexico, A.C. All rights reserved.
ADAPTATION DROUGHT VULNERABILITY ECOPHYSIOLOGY PLANT WATER RELATIONS SYSTEMATIC REVIEW BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
Iván Tamayo-Cen Benjamin Torke JOSE ENRIQUE LOPEZ CONTRERAS GERMAN CARNEVALI FERNANDEZ CONCHA Ivón Mercedes Ramírez Morillo Lilia Lorena Can Itza RODRIGO STEFANO DUNO (2022, [Artículo])
We present the most complete molecular phylogeny to date of the Pithecellobium clade of subfamily Caesalpinioideae. This neotropical group was informally recognised (as the Pithecellobium alliance) at the end of the 20th century by Barneby and Grimes (1996) and includes five genera and 33 species distributed from the southern United States and Caribbean Islands to north-eastern South America. Our aims were to further test the monophyly of the group and its genera and to identify sister group relationships within and amongst the genera. A phylogenetic analysis of nuclear ribosomal DNA sequences (ITS and ETS) was performed. The results provide further support for the monophyly of the Pithecellobium clade. The genera Ebenopsis, Pithecellobium and Sphinga were strongly supported as monophyletic. Havardia and Painteria were found to be non-monophyletic, prompting their re-circumscriptions and the description of two new genera: Gretheria and Ricoa. New combinations are made for the three species transferred to the new genera. © Iván Tamayo-Cen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
FABACEAE INGEAE INGOID CLADE MIMOSOID NEW WORLD PHYLOGENETIC SYSTEMATIC TAXONOMY BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) TAXONOMÍA VEGETAL TAXONOMÍA VEGETAL
Kassandra Elizabeth López Esparza Raúl Pérez Bustamante GUILLERMO RAUL GARCIA FERRERA (2023, [Artículo])
La obligación de llevar un sistema o equipo a su máximo rendimiento y operación, así como la resolución de posibles fallas en el mismo, ha dado lugar a la necesidad de desarrollar un ámbito especializado dedicado exclusivamente a abordar estas obligaciones. De esto surge el campo del mantenimiento, cuyo propósito fundamental es asegurar el funcionamiento adecuado de los equipos o instalaciones en los cuales se lleva a cabo dicho trabajo, así como corregir y prevenir fallas o problemas en los sistemas en cuestión. El mantenimiento puede aplicarse en una amplia gama de sectores donde se necesite prevenir o corregir alguna operación, y en el caso del sector energético renovable esto no es una excepción. En particular, el mantenimiento de los sistemas fotovoltaicos interconectadas a la red (SFIR) busca llevar la instalación a su mejor zona de operación y funcionamiento para con esto asegurar la generación de energía. Es por esta razón, que el sector energético se ha unido al desarrollo de una rama que se dedique a la operación y mantenimiento (O&M) de los sistemas fotovoltaicos. En este artículo se exponen los resultados de un estudio de mantenimiento preventivo en una instalación fotovoltaica ubicada en el estado de Aguascalientes, el cual fue realizado por Sunna Power, una empresa dedicada a ofrecer servicios de mantenimiento a SFIR en México. El trabajo explorará el estado de la instalación previo al mantenimiento y su situación una vez que éste ha sido ejecutado. Aun cuando los SFIR requieren poco mantenimiento, este articulo pretende demostrar que a pesar de esto la implementación de un plan de mantenimiento en las instalaciones puede generar un impacto positivo en la producción de energía del sistema, mostrando los resultados obtenidos en el mantenimiento ejecutado en la instalación fotovoltaica.
The obligation to ensure that a system or piece of equipment achieves its maximum performance and functionality, and to correct any failures that may occur, has led to the need to develop a specialized field dedicated exclusively to meeting these obligations. This has given rise to the field of maintenance, the basic aim of which is to ensure the correct functioning of the equipment or installations on which the work is carried out, and to correct and prevent any failures or problems in the systems concerned; maintenance can be applied in a wide range of sectors where it is necessary to prevent or correct an operation, and the renewable energy sector is no exception. In particular, the maintenance of photovoltaic systems connected to the grid (SFIR) aims to bring the installation to its best operational and functional range in order to guarantee energy production; it is for this reason that the energy sector has participated in the development of a branch dedicated to the operation and maintenance (O&M) of photovoltaic systems. This article presents the results of a preventive maintenance study in a photovoltaic plant located in the state of Aguascalientes, carried out by Sunna Power, a company dedicated to providing maintenance services to SFIR in Mexico. The study examines the condition of the installation before maintenance and the situation after maintenance. Although SFIR requires little maintenance, this article aims to demonstrate that the implementation of a maintenance plan in the plants can nevertheless have a positive impact on the energy production of the system, displaying the results obtained in the maintenance carried out on the photovoltaic installation.
Mantenimiento preventivo Módulo fotovoltaico Plan de mantenimiento Sistema fotovoltaico Preventive maintenance Maintenance plan Photovoltaic system INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS
Jelle Van Loon (2022, [Capítulo de libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CASE STUDIES AGRICULTURAL EXTENSION INTERNATIONAL COOPERATION AGRIFOOD SYSTEMS