Filtrar por:
Tipo de publicación
- Artículo (37)
- Objeto de congreso (24)
- Tesis de maestría (6)
- Documento de trabajo (5)
- Libro (4)
Autores
- Jelle Van Loon (9)
- Tek Sapkota (5)
- Jason Donovan (4)
- ML JAT (4)
- Christian Thierfelder (3)
Años de Publicación
Editores
- CICESE (4)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Editorial Académica Dragón Azteca (1)
- Frontiers Media S.A. (1)
- Jorge A. Ruiz Vanoye (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (63)
- Repositorio Institucional CICESE (5)
- CIATEQ Digital (4)
- Repositorio Institucional CICY (2)
- Repositorio Institucional Zaloamati (2)
Tipos de Acceso
- oa:openAccess (79)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (64)
- CLIMATE CHANGE (15)
- AGRIFOOD SYSTEMS (12)
- CIENCIAS TECNOLÓGICAS (10)
- FOOD SYSTEMS (10)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Review of Nationally Determined Contributions (NCD) of Vietnam from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Over the past decades, Vietnam has significantly progressed and has transformed from being a food-insecure nation to one of the world’s leading exporters in food commodities, and from one of the world’s poorest countries to a low-middle-income country. The agriculture sector is dominated by rice and plays a vital role in food security, employment, and foreign exchange. Vietnam submitted its updated Nationally Determined Contributions (NDC) in 2022 based on the NDC 2020. There is a significant increase in greenhouse gas (GHG) emission reduction, towards the long-term goals identified in Vietnam’s National Climate Change Strategy to 2025, and efforts are being made to fulfil the commitments made at COP26. The Agriculture Sector is the second-largest contributor of GHG emissions in Vietnam, accounting for 89.75 MtCO2eq, which was about 31.6 percent of total emissions in 2014. Rice cultivation is the biggest source of emissions in the agriculture sector, accounting for 49.35% of emissions from agriculture. The total GHG removal from Land Use, Land Use Change and Forestry (LULUCF) in 2014 was -37.54 MtCO2eq, of which the largest part was from the forest land sub-sector (35.61 MtCO2eq), followed by removal from croplands (7.31 MtCO2eq) (MONRE 2019).
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS
Remote sensing of quality traits in cereal and arable production systems: A review
Zhenhai Li xiuliang jin Gerald Blasch James Taylor (2024, [Artículo])
Cereal is an essential source of calories and protein for the global population. Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers, grading harvest and categorised storage for enterprises, future trading prices, and policy planning. The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits. Many studies have also proposed models and methods for predicting such traits based on multi-platform remote sensing data. In this paper, the key quality traits that are of interest to producers and consumers are introduced. The literature related to grain quality prediction was analyzed in detail, and a review was conducted on remote sensing platforms, commonly used methods, potential gaps, and future trends in crop quality prediction. This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.
Quality Traits Grain Protein CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA REMOTE SENSING QUALITY GRAIN PROTEINS CEREALS PRODUCTION SYSTEMS
Review of Nationally Determined Contributions (NCD) of Colombia from the perspective of food systems
Tek Sapkota (2023, [Documento de trabajo])
Food is a vital component of Colombia's economy. The impact of climate change on agriculture and food security in the country is severe. The effects have resulted in decreased production and in the productivity of agricultural soil. Desertification processes are accelerating and intensifying. Colombia's government formally submitted its Nationally Determined Contribution (NDC) on December 29, 2020. This paper examines Colombia's NDC from the standpoint of the food system.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES
Tek Sapkota (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE STRATEGIES CLIMATE CHANGE IMPACT FOOD SECURITY FOOD SYSTEMS CLIMATE-SMART AGRICULTURE SUSTAINABLE INTENSIFICATION CONSERVATION AGRICULTURE SMALLHOLDERS
Colaboración y co-creación de conocimiento para una agricultura sostenible
Jelle Van Loon (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SUSTAINABLE AGRICULTURE AGRIFOOD SYSTEMS FOOD SECURITY CLIMATE CHANGE ADAPTATION
Monitoreo con drones en gráficas con viento dinámico
Jovanni Manuel López Elisea (2024, [Tesis de maestría])
108 páginas. Maestría en Optimización.
Dada una gráfica completa no dirigida, se desea recorrer un subconjunto de sus aristas usando una flotilla de drones. Los drones tienen baterías limitadas que pueden recargarse al regresar a la base y, en principio, el tiempo para recorrer una arista está en función de la distancia entre sus vértices. Sin embargo, ante la presencia de viento el tiempo de recorrer una arista puede depender del sentido en el que se haga. La dificultad del problema aumenta si además la intensidad del viento puede variar de un instante a otro. En esta tesis se aborda el problema anteriormente descrito para el caso particular en el que los vértices son puntos en el plano, el impacto del viento en los tiempos de recorrido de las aristas está relativamente acotado y el subconjunto de las aristas a recorrer inducen un árbol que abarca todos los vértices excepto la base de los drones. Dado que los drones operan simultáneamente y pueden recorrer distintas partes de la gráfica de manera independiente, se desea minimizar el tiempo que emplea el dron con el recorrido más tardado. Esta tesis presenta un modelo matemático para resolver el problema de manera exacta, así como tres heurísticas diferentes para obtener buenas soluciones factibles. La primera de estas heurísticas transforma una solución sin viento y sin batería en una solución con viento y batería. La segunda heurística es un algoritmo glotón sin comunicación entre los drones y la última heurística también es un algoritmo glotón, pero con comunicación entre los drones. Aunque el problema abordado resulta ser lo suficientemente difícil como para que su resolución exacta sea inviable en la práctica, las heurísticas diseñadas son fáciles de implementar y obtuvieron resultados razonables en un tiempo corto de cómputo.
Drone aircraft--Control systems. Drone aircraft--Mathematical models. Mathematical optimization. Heuristic programming. Dynamical systems. Graph theory. Micro vehículos aéreos. Optimización matemática. Programación heurística. Teoría de grafos. TL589.4 CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA MATEMÁTICAS INVESTIGACIÓN OPERATIVA DISTRIBUCIÓN Y TRANSPORTE
Research for development approaches in mixed crop-livestock systems of the Ethiopian highlands
Million Gebreyes James Hammond Lulseged Tamene Getachew Agegnehu Rabe Yahaya Anthony Whitbread (2023, [Artículo])
This study presents processes and success stories that emerged from Africa RISING's Research for Development project in the Ethiopian Highlands. The project has tested a combination of participatory tools at multiple levels, with systems thinking and concern for sustainable and diversified livelihoods. Bottom-up approaches guided the selection of technological interventions that could address the priority farming system challenges of the communities, leading to higher uptake levels and increased impact. Joint learning, appropriate technology selection, and the creation of an enabling environment such as the formation of farmer research groups, the establishment of innovation platforms, and capacity development for institutional and technical innovations were key to this study. The study concludes by identifying key lessons that focus more on matching innovations to community needs and geographies, systems orientation/integration of innovations, stepwise approaches to enhance the adoption of innovations, documenting farmers' capacity to modify innovations, building successful partnerships, and facilitating wider scaling of innovations for future implementation of agricultural research for development projects.
Action Research Systems Thinking CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INNOVATION PARTNERSHIPS SCALING UP INTEGRATED CROP-LIVESTOCK SYSTEMS
Manish Kakraliya Deepak Bijarniya Parbodh Chander Sharma ML JAT (2022, [Artículo])
Intensive Tillage Conventional Rice–Wheat Systems Energy Efficiency On-Farm Studies Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE-SMART AGRICULTURE RICE WHEAT CROPPING SYSTEMS
Paswel Marenya Jeetendra Aryal Annet Mulema Dil Bahadur Rahut (2023, [Artículo])
Agrifood Systems Transformation Global South Institutional Innovations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRIFOOD SYSTEMS GREEN REVOLUTION INNOVATION SUSTAINABLE DEVELOPMENT
Kindie Tesfaye Vakhtang Shelia Pierre C. Sibiry Traore Dawit Solomon Gerrit Hoogenboom (2023, [Artículo])
Seasonal climate variability determines crop productivity in Ethiopia, where rainfed smallholder farming systems dominate in the agriculture production. Under such conditions, a functional and granular spatial yield forecasting system could provide risk management options for farmers and agricultural and policy experts, leading to greater economic and social benefits under highly variable environmental conditions. Yet, there are currently only a few forecasting systems to support early decision making for smallholder agriculture in developing countries such as Ethiopia. To address this challenge, a study was conducted to evaluate a seasonal crop yield forecast methodology implemented in the CCAFS Regional Agricultural Forecasting Toolbox (CRAFT). CRAFT is a software platform that can run pre-installed crop models and use the Climate Predictability Tool (CPT) to produce probabilistic crop yield forecasts with various lead times. Here we present data inputs, model calibration, evaluation, and yield forecast results, as well as limitations and assumptions made during forecasting maize yield. Simulations were conducted on a 0.083° or ∼ 10 km resolution grid using spatially variable soil, weather, maize hybrids, and crop management data as inputs for the Cropping System Model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT). CRAFT combines gridded crop simulations and a multivariate statistical model to integrate the seasonal climate forecast for the crop yield forecasting. A statistical model was trained using 29 years (1991–2019) data on the Nino-3.4 Sea surface temperature anomalies (SSTA) as gridded predictors field and simulated maize yields as the predictand. After model calibration the regional aggregated hindcast simulation from 2015 to 2019 performed well (RMSE = 164 kg/ha). The yield forecasts in both the absolute and relative to the normal yield values were conducted for the 2020 season using different predictor fields and lead times from a grid cell to the national level. Yield forecast uncertainties were presented in terms of cumulative probability distributions. With reliable data and rigorous calibration, the study successfully demonstrated CRAFT's ability and applicability in forecasting maize yield for smallholder farming systems. Future studies should re-evaluate and address the importance of the size of agricultural areas while comparing aggregated simulated yields with yield data collected from a fraction of the target area.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP MODELLING DECISION SUPPORT SYSTEMS FORECASTING MAIZE