Filtros
Filtrar por:
Tipo de publicación
- Event (4582)
- Artículo (1037)
- Dataset (932)
- Tesis de maestría (735)
- Tesis de doctorado (380)
Autores
- Servicio Sismológico Nacional (IGEF-UNAM) (4582)
- Thomas Payne (298)
- Fernando Nuno Dias Marques Simoes (250)
- Ravi Singh (204)
- Jose Crossa (98)
Años de Publicación
Editores
- UNAM, IGEF, SSN, Grupo de Trabajo (4582)
- International Maize and Wheat Improvement Center (644)
- Cenoteando, Facultad de Ciencias, UNAM (cenoteando.mx) (249)
- Instituto Mexicano de Tecnología del Agua (186)
- El autor (122)
Repositorios Orígen
- Repositorio de datos del Servicio Sismológico Nacional (4582)
- Repositorio Institucional de Datos y Software de Investigación del CIMMYT (682)
- Repositorio institucional del IMTA (482)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (426)
- COLECCIONES DIGITALES COLMEX (368)
Tipos de Acceso
- oa:openAccess (8256)
- oa:embargoedAccess (11)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- Sismología (13746)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (5150)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (4631)
- GEOFÍSICA (4585)
- SISMOLOGÍA Y PROSPECCIÓN SÍSMICA (4584)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Fernando Arellano-Martín JUAN MANUEL DUPUY RADA ROBERTH ARMANDO US SANTAMARIA José Luis Andrade Torres (2022, [Artículo])
Tropical forest soils store a third of the global terrestrial carbon and control carbon dioxide (CO2) terrestrial effluxes to the atmosphere produced by root and microbial respiration. Soil CO2 efflux varies in time and space and is known to be strongly influenced by soil temperature and water content. However, little is known about the influence of seasonality on soil CO2 efflux, especially in tropical dry forests. This study evaluated soil CO2 efflux, soil temperature, and soil volumetric water content in a semideciduous tropical forest of the Yucatan Peninsula under two sites (flat areas close to and far from hills), and three seasons: dry, wet, and early dry (a transition between the rainy and dry seasons) throughout a year. Additionally, six 24-h periods of soil CO2 efflux were measured within these three seasons. The mean annual soil CO2 efflux was 4±2.2 μmol CO2 m-2 s-1, like the mean soil CO2 efflux during the early dry season. In all seasons, soil CO2 efflux increased linearly with soil moisture, which explained 45% of the spatial-temporal variation of soil CO2 efflux. Soil CO2 efflux was higher close to than far from hills in some months. The daily variation of soil CO2 efflux was less important than its spatial and seasonal variation likely due to small diel variations in temperature. Transition seasons are common in many tropical dry forests, and they should be taken into consideration to have a better understanding of the annual soil CO2 efflux, especially under future climate-change scenarios. © 2022 Mexican Society of Soil Science. All Rights Reserved.
EARLY DRY SEASON SOIL TEMPERATURE SOIL VOLUMETRIC WATER CONTENT TROPICAL DRY FOREST BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
Noel Ndlovu Vijay Chaikam Berhanu Tadesse Ertiro Biswanath Das Yoseph Beyene Charles Spillane Prasanna Boddupalli Manje Gowda (2023, [Artículo])
Grain Yield Low Soil Nitrogen CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN NITROGEN SOIL CHEMICOPHYSICAL PROPERTIES MAIZE QUANTITATIVE TRAIT LOCI
Christian Thierfelder (2023, [Artículo])
This article focuses on the results from trials developed to monitor the short-term effects of conventionally tilled systems versus CA on soil quality and crop productivity under conditions of the major cropping systems in central, north-central and north-eastern regions of Namibia. Conventional tillage (CT), Minimum tillage (MT), Minimum tillage, mulch (MT-M), Minimum tillage, rotation (MT-R) and Minimum tillage, mulch and rotation (MT-MR) were the primary treatments tested. Significant differences (p≤0.000) among the treatments were observed in the 0-60 cm soil profiles where MT-M plots had the highest soil moisture content (39.8 mm, Standard Error of Mean 0.2815) over the study period. A significant difference (p=0.0206) in grain yield was observed in the second season with CT plots yielding the highest grain yield (3852.3 kg ha-1, standard error of mean 240.35). Results suggest that CA has the potential to increase water conservation and contribute to reduction of the risk of crop failure. Climate change driven degradation under conventional tillage necessitate alternative sustainable tillage methods. Conservation tillage methods and conservation agricultural practices that minimize soil disturbance while maintaining soil cover need to be adopted more locally as viable alternatives to conventional tillage.
Grain Yield Soil Moisture Content CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE CONVENTIONAL TILLAGE GRAIN YIELDS SOIL WATER CONTENT MAIZE
C.M. Parihar Mahesh Gathala ML JAT (2023, [Artículo])
The present study was carried out at Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar during 2021-2023 to focus on examining alterations in SOC pools resulting from conservation agriculture (CA) practices in R-W system in the eastern IGP, following the collection of soil samples from a long-term trial that was initiated in rainy (kharif) season 2006. The trial included eight combinations, namely: conventional tilled rice (Oryza sativa L.) and wheat (Triticum aestivum L.) (CTR-CTW); CT rice and zero till wheat (CTR-ZTW); direct seeded rice (DSR) and wheat on permanent raised beds (PBDSR-PBW); ZTDSR and CT Wheat (ZTDSR-CTW); ZTDSR and ZT wheat without residue (ZTDSR-ZTW-R); ZTDSR-ZT wheat with residue (ZTDSR-ZTW +R); unpuddled transplanted riceZTW (UpTR-ZTW) and ZTDSR-sesbania brown manure-ZTW (ZTDSR-S-ZTW). Results revealed that implementing zero tillage (ZT) combined with residue retention in rice and wheat cultivation led to enhanced levels of soil organic carbon (SOC) across all four fractions, namely very labile (CVL), labile (CL), less labile (CLL), and non-labile (CNL), in comparison to the continuous and rotational tillage practices. The tillage and residue management options significantly affected the lability index (LI) and C pool index (CPI), with zero-tillage and residue retention leading to lower LI and higher CPI values. The management practices significantly affected the C management index (CMI), with zero-tillage and residue retention showing the highest CMI values. Findings showed the potential of CA practices for enhancing soil C quality as well as C sequestration in soil of the Eastern IGP of India.
Carbon Management Index Soil Organic Carbon Fractions CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE SOIL ORGANIC CARBON ZERO TILLAGE
Soil analysis and integrated nutrient management
Isaiah Nyagumbo (2021, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL ANALYSIS NUTRIENT MANAGEMENT SOIL FERTILITY
Sonam Sherpa virender kumar Andrew Mcdonald (2024, [Artículo])
Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a −0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative ‘no burn’ residue management practices.
Soil Carbon Rice Residue Burning Life Cycle Assessment CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL CARBON RICE LIFE CYCLE GREENHOUSE GASES CLIMATE CHANGE
Yendi Navarro-Noya Marco Luna_Guido Nele Verhulst Bram Govaerts Luc Dendooven (2022, [Artículo])
Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha-1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH4)2SO4 (300 kg N ha-1) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO2 emission, mineral N and the bacterial community were monitored. Application of NH4+ significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH4+ and NO2- was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH4+ enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AMMONIUM CROP RESIDUES WHEAT MAIZE TILLAGE SOIL
Climate robust soil fertility management by smallholders in Africa, Asia, and Latin America
Tek Sapkota (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL FERTILITY SMALLHOLDERS FERTILIZERS NUTRIENT MANAGEMENT
Hacia un manejo sustentable de la quinua en el altiplano sur de Bolivia
Santiago Lopez-Ridaura Ravi Gopal Singh (2022, [Libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA QUINUA FERTILIDAD DEL SUELO GANADERÍA AGRICULTURA DE CONSERVACIÓN SUELO SIEMBRA PLAGAS QUINOA SOIL FERTILITY ANIMAL HUSBANDRY CONSERVATION AGRICULTURE SOIL SOWING PESTS
Regis Chikowo Sieglinde Snapp (2023, [Artículo])
Crop diversification with grain legumes has been advocated as a means to increase agroecological resilience, diversify livelihoods, boost household nutrition, and enhance soil health and fertility in cereal-based cropping systems in sub-Saharan Africa and around the world. Soil organic carbon (SOC) is a primary indicator of soil health and there is limited data regarding SOC pools and grain legume diversification on smallholder farms where soils are often marginal. In Malawi, a range of legume diversification options are under investigation, including rotations and a doubled-up legume rotation (DLR) system in which two compatible legumes are intercropped and then rotated with a cereal. The impact of the DLR system on SOC has not yet been determined, and there is a lack of evidence regarding SOC status over a gradient of simple to complex grain legume diversified systems. We address this knowledge gap by evaluating these systems in comparison to continuous sole maize (Zea mays L.) at three on-farm trial sites in central Malawi. After six years of trial establishment, we measured SOC in bulk soils and aggregate fractions and in faster cycling SOC pools that respond more rapidly to management practices, including water extractable organic carbon (WEOC), particulate organic matter carbon (POM-C), potentially mineralizable carbon (C), and macroaggregate C. Cropping treatment differences were not seen in bulk SOC or total N, but they were apparent in SOC pools with a shorter turnover time. The DLR system of intercropped pigeonpea (Cajanus cajan (L.) Millsp.) and groundnut (Arachis hypogaea L.) rotated with maize had higher WEOC, POM-C, potentially mineralizable C, macroaggregate and microaggregate C values than continuous maize. Of the single legume rotations, the pigeonpea-maize rotation had more mineralizable C and microaggregate C compared to continuous maize, while the groundnut-maize rotation had similar C values to the maize system. Overall, this study shows the potential for crop rotations diversified with grain legumes to enhance C in management sensitive SOC pools, and it is one of the first reports to show this effect on smallholder farm sites.
Crop Diversification Water Extractable Organic Carbon CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DIVERSIFICATION LEGUMES PARTICULATE ORGANIC MATTER SOIL ORGANIC CARBON