Filtros
Filtrar por:
Tipo de publicación
- Tesis de maestría (18)
- Artículo (13)
- Artículo (1)
- Capítulo de libro (1)
- Objeto de congreso (1)
Autores
- C.M. Parihar (2)
- Hari Sankar Nayak (2)
- Jose Crossa (2)
- Marlee Labroo (2)
- Shankar Lal Jat (2)
Años de Publicación
Editores
- El autor (14)
- CICESE (2)
- Ciudad de México : UAM, Unidad Cuajimalpa, División de Ciencias Naturales e Ingeniería, Posgrado en Ciencias Naturales e Ingeniería (1)
- Ciudad de México : UAM, Unidad Cuajimalpa, División de Ciencias Sociales y Humanidades (1)
- Juan A. Añel, Universidade de Vigo, Spain (1)
Repositorios Orígen
- Repositorio Digital CIDE (13)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (9)
- Repositorio Institucional CICESE (3)
- Concentración de Recursos de Información Científica y Académica, UAM Cuajimalpa (2)
- Repositorio Institucional Zaloamati (2)
Tipos de Acceso
- oa:openAccess (34)
Idiomas
Materias
- CIENCIAS SOCIALES (29)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (10)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (3)
- OCEANOGRAFÍA (3)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (2)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Kindie Tesfaye Dereje Ademe Enyew Adgo (2023, [Artículo])
This study determined the most effective plating density (PD) and nitrogen (N) fertilizer rate for well-adapted BH540 medium-maturing maize cultivars for current climate condition in north west Ethiopia midlands. The Decision Support System for Agrotechnology Transfer (DSSAT)-Crop Environment Resource Synthesis (CERES)-Maize model has been utilized to determine the appropriate PD and N-fertilizer rate. An experimental study of PD (55,555, 62500, and 76,900 plants ha−1) and N (138, 207, and 276 kg N ha−1) levels was conducted for 3 years at 4 distinct sites. The DSSAT-CERES-Maize model was calibrated using climate data from 1987 to 2018, physicochemical soil profiling data (wilting point, field capacity, saturation, saturated hydraulic conductivity, root growth factor, bulk density, soil texture, organic carbon, total nitrogen; and soil pH), and agronomic management data from the experiment. After calibration, the DSSAT-CERES-Maize model was able to simulate the phenology and growth parameters of maize in the evaluation data set. The results from analysis of variance revealed that the maximum observed and simulated grain yield, biomass, and leaf area index were recorded from 276 kg N ha−1 and 76,900 plants ha−1 for the BH540 maize variety under the current climate condition. The application of 76,900 plants ha−1 combined with 276 kg N ha−1 significantly increased observed and simulated yield by 25% and 15%, respectively, compared with recommendation. Finally, future research on different N and PD levels in various agroecological zones with different varieties of mature maize types could be conducted for the current and future climate periods.
Maize Model Planting Density CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE MODELS SPACING NITROGEN FERTILIZERS YIELDS
Diagnóstico de los artículos científicos publicados en la Unidad de Recursos Naturales del CICY
JOSE LUIS HERNANDEZ STEFANONI Fernando de Jesús Tun Dzul DANIELA HUDA TARHUNI NAVARRO MIRIAM BEATRIZ JUAN QUI VALENCIA (2022, [Artículo])
Se presenta un diagnóstico estratégico de la productividad de artículos científicos publicados entre 2010 y 2021 de la Unidad de Recursos Naturales del CICY. Los resultados muestran que se publican entre 9 y 11 artículos por año en cada línea de investigación, que corresponden a 3 artículos por investigador por año. Otra fortaleza está en la formación de recursos humanos ya que entre el 40 y 71% de los artículos de autor por correspondencia el primer autor es un estudiante. Sin embargo, se tendría que mejorar la productividad de artículos como primer autor o autor de correspondencia. Adicionalmente, el impacto de los artículos publicados es similar al de la media nacional. Finalmente, esta información permite identificar las áreas de oportunidad y las fortalezas en cada línea de investígación.
ARTICULOS CIENTIFICOS DIAGNOSTICO IMPACTO ACADEMICO INDICADORES LINEAS DE INVESTIGACION BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL
Martin van Ittersum (2023, [Artículo])
Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.
Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY
Osval Antonio Montesinos-Lopez ABELARDO MONTESINOS LOPEZ RICARDO ACOSTA DIAZ Rajeev Varshney Jose Crossa ALISON BENTLEY (2022, [Artículo])
Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. In plant breeding, it has the potential to increase the speed and reduce the cost of selection. However, to optimize resources, sparse testing methods have been proposed. A common approach is to guarantee a proportion of nonoverlapping and overlapping lines allocated randomly in locations, that is, lines appearing in some locations but not in all. In this study we propose using incomplete block designs (IBD), principally, for the allocation of lines to locations in such a way that not all lines are observed in all locations. We compare this allocation with a random allocation of lines to locations guaranteeing that the lines are allocated to
the same number of locations as under the IBD design. We implemented this benchmarking on several crop data sets under the Bayesian genomic best linear unbiased predictor (GBLUP) model, finding that allocation under the principle of IBD outperformed random allocation by between 1.4% and 26.5% across locations, traits, and data sets in terms of mean square error. Although a wide range of performance improvements were observed, our results provide evidence that using IBD for the allocation of lines to locations can help improve predictive performance compared with random allocation. This has the potential to be applied to large-scale plant breeding programs.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA Bayes Theorem Genome Inflammatory Bowel Diseases Models, Genetic Plant Breeding
Hari Sankar Nayak C.M. Parihar Shankar Lal Jat ML JAT Ahmed Abdallah (2022, [Artículo])
Non-Linear Growth Model Nitrogen Remobilization Right Placement Precision Nitrogen Management CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GROWTH MODELS NITROGEN NUTRIENT MANAGEMENT
Marlee Labroo Jeffrey Endelman Dorcus Gemenet Christian Werner Robert Gaynor GIOVANNY COVARRUBIAS-PAZARAN (2023, [Artículo])
Reciprocal Recurrent Selection Clonal Diploids CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DIPLOIDY BREEDING HETEROSIS STOCHASTIC MODELS
Roberto Fritsche-Neto Marlee Labroo (2024, [Artículo])
Genomic Prediction Reciprocal Recurrent Selection Heterotic Pools CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA STOCHASTIC MODELS RICE HYBRIDS GENETIC IMPROVEMENT GENETIC GAIN BREEDING PROGRAMMES
Algorithmic differentiation of linear mixed models with variance-covariance structures
Fernando Henrique Toledo Jose Crossa Juan Burgueño Keith Gardner Rosa Angela Pacheco Gil (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MATHEMATICAL MODELS ALGORITHMS LINEAR MODELS
Timothy Joseph Krupnik Jeroen Groot (2024, [Artículo])
We investigated alternative cropping and feeding options for large (>10 cows), medium (5–10 cows) and small (≤4 cows) mixed crop – livestock farm types, to enhance economic and environmental performance in Jhenaidha and Meherpur districts – locations with increasing dairy production – in south western Bangladesh. Following focus group discussions with farmers on constraints and opportunities, we collected baseline data from one representative farm from each farm size class per district (six in total) to parameterize the whole-farm model FarmDESIGN. The six modelled farms were subjected to Pareto-based multi-objective (differential evolution algorithm) optimization to generate alternative dairy farm and fodder configurations. The objectives were to maximize farm profit, soil organic matter balance, and feed self-reliance, in addition to minimizing feed costs and soil nitrogen losses as indicators of sustainability. The cropped areas of the six baseline farms ranged from 0.6 to 4.0 ha and milk production per cow was between 1,640 and 3,560 kg year−1. Feed self-reliance was low (17%–57%) and soil N losses were high (74–342 kg ha−1 year−1). Subsequent trade-off analysis showed that increasing profit and soil organic matter balance was associated with higher risks of N losses. However, we found opportunities to improve economic and environmental performance simultaneously. Feed self-reliance could be increased by intensifying cropping and substituting fallow periods with appropriate fodder crops. For the farm type with the largest opportunity space and room to manoeuvre, we identified four strategies. Three strategies could be economically and environmentally benign, showing different opportunities for farm development with locally available resources.
Ruminant Feed Pareto-Based Optimization Farm Bioeconomic Model CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUMINANT FEEDING BIOECONOMIC MODELS MIXED CROPPING FARMS LIVESTOCK
Biodegradación de carbamazepina en condiciones aerobias por Schizophyllum commune
RITA CAROLINA CRUZ RANGEL (2023, [Tesis de maestría])
Los cuerpos de aguas superficiales de todo el mundo, incluido México, llegan a tener
presencia de microcontaminantes (MC), cuya característica principal es su baja
concentración en la que se encuentran: mg/L (ppm), µg/L o ng/L (trazas). La
carbamazepina (CBZ) se encuentra dentro de este grupo y a la vez en un subgrupo
denominado como productos farmacéuticos y de cuidado personal (PPCP, por sus siglas
en inglés); cuya característica suele ser su persistencia a los tratamientos biológicos
dentro de las Plantas de Tratamiento de Aguas Residuales (PTAR).
Los hongos de pudrición blanca (WRF, por sus siglas en inglés) son conocidos por poseer
un sistema enzimático complejo, el cual le permite degradar MC con moléculas
complejas. Por tal motivo, el objetivo de este trabajo fue comprobar la capacidad
degradativa de Schizophyllum commune en CBZ.
INGENIERÍA Y TECNOLOGÍA Carbamazepina - Tesis y disertaciones académicas Aguas residuales - Purificación Schizophyllum commune