Búsqueda avanzada


Área de conocimiento




136 resultados, página 3 de 10

Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems

Mahesh Gathala ML JAT (2023, [Artículo])

A 3-year field experiment was setup to address the threat of underground water depletion and sustainability of agrifood systems. Subsurface drip irrigation (SDI) system combined with nitrogen management under conservation agriculture-based (CA) maize-wheat system (MWS) effects on crop yields, irrigation water productivity (WPi), nitrogen use efficiency (NUE) and profitability. Grain yields of maize, wheat, and MWS in the SDI with 100% recommended N were significantly higher by 15.8%, 5.2% and 11.2%, respectively, than conventional furrow/flood irrigation (CT-FI) system. System irrigation water savings (~ 55%) and the mean WPi were higher in maize, wheat, and MWS under the SDI than CT-FI system. There was saving of 25% of fertilizer N in maize and MWS whereas no saving of N was observed in wheat. Net returns from MWS were significantly higher (USD 265) under SDI with 100% N (with no subsidy) than CT-FI system despite with higher cost of production. The net returns were increased by 47% when considering a subsidy of 80% on laying SDI system. Our results showed a great potential of complementing CA with SDI and N management to maximize productivity, NUE, and WPi, which may be economically beneficial and environmentally sound in MWS in Trans-IGP of South Asia.

Subsurface Drip Irrigation Nitrogen Management Irrigation Water Productivity Water Savings CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA IRRIGATION WATER NITROGEN-USE EFFICIENCY CONSERVATION AGRICULTURE MAIZE WHEAT

Postularse como punto nacional de contacto sectorial en el área prioritaria de medio ambiente y cambio climático

CARLOS PATIÑO GOMEZ (2012, [Documento de trabajo])

Como punto nacional de contacto sectorial en medio ambiente y cambio climático, el IMTA realizó el mapeo de expertos, instituciones y empresas que trabajan con los temas de medio ambiente y cambio climático en México, con el objetivo de generar mecanismos de promoción y difusión para fortalecer la internacionalización de las instituciones científicas y tecnológicas mexicanas y generar proyectos de alto valor agregado con un efecto positivo sobre la competitividad, el crecimiento y el empleo en la economía nacional. Uno de los principales logros de este proyecto deriva en el potencial para promover la vinculación de científicos y expertos nacionales en proyectos de cooperación internacional mediante el acceso a información relevante sobre expertos e instituciones con la finalidad de identificar y localizar la capacidad de las instituciones mexicanas en el tema de medio ambiente y cambio climático, a través de una aplicación web amigable y de fácil uso para los usuarios.

Cambio climático Contaminación ambiental Efecto invernadero Prevención y mitigación Programas gubernamentales Informes de proyectos CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA

Requerimientos de riego para tomate de invernadero

Requerimientos de riego para tomate de invernadero

JORGE FLORES VELAZQUEZ WALDO OJEDA BUSTAMANTE ABRAHAM ROJANO AGUILAR (2007, [Artículo])

El tomate es la principal hortaliza cultivada, tanto a cielo abierto como en invernadero, en todo el mundo. Uno de los problemas principales en la producción de tomate en el centro de México es la escasa información sobre sus requerimientos de riego, en consecuencia, la calendarización del riego es empírica. En este trabajo se estimaron los requerimientos diarios de riego del tomate por medio de lisímetros de drenaje en las condiciones típicas de infraestructura y densidad de población, así como de manejo agronómico y ambiental del área de Chapingo, México. Se estudió el tomate en invernadero tipo saladette (Lycopersicon esculentum Mill. cv. Tequila), con una densidad típica de la zona de 4.3 plantas m-2 en un invernadero de polietileno con un sustrato de tezontle y riego por goteo. Los resultados indican que la evapotranspiración diaria del cultivo es del orden de 0.2 L planta-1 en la etapa inicial y hasta 1.5 L planta-1 en la etapa de máxima demanda. El volumen bruto aplicado por planta en todo el ciclo fue de 143 L, con una productividad del agua de 35 kg m-3 y un rendimiento de 20 kg m-2. Se presentan las demandas hídricas del tomate en sus diferentes etapas fenológicas.

Programación del riego Invernaderos Cultivos alimenticios INGENIERÍA Y TECNOLOGÍA