Búsqueda avanzada


Área de conocimiento




116 resultados, página 2 de 10

The Banana MaWRKY18, MaWRKY45, MaWRKY60 and MaWRKY70 Genes Encode Functional Transcription Factors and Display Differential Expression in Response to Defense Phytohormones

SERGIO GARCIA LAYNES VIRGINIA AURORA HERRERA VALENCIA Lilia Guadalupe Tamayo Torres VERONICA LIMONES BRIONES FELIPE ALONSO BARREDO POOL FRAY MARTIN BAAS ESPINOLA Ángel Gabriel Alpuche Solís CARLOS ALBERTO PUCH HAU SANTY PERAZA ECHEVERRIA (2022, [Artículo])

"WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and Arabidopsis WRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop."

Banana Transcription factor WRKY Defense phytohormones Salicylic acid Methyl jasmonate SAR ISR Broad-spectrum resistance BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA

Alternative cropping and feeding options to enhance sustainability of mixed crop-livestock farms in Bangladesh

Timothy Joseph Krupnik Jeroen Groot (2024, [Artículo])

We investigated alternative cropping and feeding options for large (>10 cows), medium (5–10 cows) and small (≤4 cows) mixed crop – livestock farm types, to enhance economic and environmental performance in Jhenaidha and Meherpur districts – locations with increasing dairy production – in south western Bangladesh. Following focus group discussions with farmers on constraints and opportunities, we collected baseline data from one representative farm from each farm size class per district (six in total) to parameterize the whole-farm model FarmDESIGN. The six modelled farms were subjected to Pareto-based multi-objective (differential evolution algorithm) optimization to generate alternative dairy farm and fodder configurations. The objectives were to maximize farm profit, soil organic matter balance, and feed self-reliance, in addition to minimizing feed costs and soil nitrogen losses as indicators of sustainability. The cropped areas of the six baseline farms ranged from 0.6 to 4.0 ha and milk production per cow was between 1,640 and 3,560 kg year−1. Feed self-reliance was low (17%–57%) and soil N losses were high (74–342 kg ha−1 year−1). Subsequent trade-off analysis showed that increasing profit and soil organic matter balance was associated with higher risks of N losses. However, we found opportunities to improve economic and environmental performance simultaneously. Feed self-reliance could be increased by intensifying cropping and substituting fallow periods with appropriate fodder crops. For the farm type with the largest opportunity space and room to manoeuvre, we identified four strategies. Three strategies could be economically and environmentally benign, showing different opportunities for farm development with locally available resources.

Ruminant Feed Pareto-Based Optimization Farm Bioeconomic Model CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUMINANT FEEDING BIOECONOMIC MODELS MIXED CROPPING FARMS LIVESTOCK