Filtros
Filtrar por:
Tipo de publicación
- Event (4582)
- Artículo (1146)
- Dataset (932)
- Tesis de maestría (764)
- Tesis de doctorado (405)
Autores
- Servicio Sismológico Nacional (IGEF-UNAM) (4582)
- Thomas Payne (298)
- Fernando Nuno Dias Marques Simoes (250)
- Ravi Singh (204)
- Jose Crossa (98)
Años de Publicación
Editores
- UNAM, IGEF, SSN, Grupo de Trabajo (4582)
- International Maize and Wheat Improvement Center (644)
- Cenoteando, Facultad de Ciencias, UNAM (cenoteando.mx) (249)
- Instituto Mexicano de Tecnología del Agua (245)
- El autor (130)
Repositorios Orígen
- Repositorio de datos del Servicio Sismológico Nacional (4582)
- Repositorio Institucional de Datos y Software de Investigación del CIMMYT (682)
- Repositorio institucional del IMTA (665)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (426)
- COLECCIONES DIGITALES COLMEX (368)
Tipos de Acceso
- oa:openAccess (8514)
- oa:embargoedAccess (13)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- Sismología (13746)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (5150)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (4631)
- GEOFÍSICA (4585)
- SISMOLOGÍA Y PROSPECCIÓN SÍSMICA (4584)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Edna Mageto Jose Crossa Paulino Pérez-Rodríguez Thanda Dhliwayo natalia palacios rojas XUECAI ZHANG (2020, [Dataset])
The Zinc association mapping (ZAM) panel is a set of 923 elite inbred lines from the International Maize and Wheat Improvement Center (CIMMYT) biofortification breeding program. The panel represented wide genetic diversity for kernel Zn and is comprised of several lines with tolerance/resistance to an array of abiotic and biotic stresses commonly affecting maize production in the tropics, improved nitrogen use efficiency, and grain nutritional quality. The ZAM panel_923_LINES_GENO and Zinc association mapping (ZAM) panel_phenotypic data are two files with GBS and phenotypic data for zinc (Zn) from this population. From the ZAM panel, four inbred lines (two with high-Zn and two with low-Zn) were selected and used to form the bi-parental populations, namely DH population1 and DH population2. Genotypic and phenotypic data corresponding to these populations are DH populations1&2_255_LINES_GENO and DH population1_phenotypic data and DH population2_phenotypic data
Blue tortilla preference in Mexico
Trent Blare (2020, [Dataset])
The study shows the database made from interviews conducted in Texcoco, Mexico during April, May and June 2019. The objective of the study was to understand consumer preferences and consumption and purchasing habits for white and blue maize tortillas.
6th Stress Adapted Trait Yield Nurseries
Matthew Paul Reynolds Thomas Payne (2020, [Dataset])
Within the framework of SATYN, two types of nurseries are produced: SATYN series with odd numbers are lines for drought-stressed areas, and SATYN series with even numbers are lines for heat stress conditions. These nurseries have been phenotyped in the major wheat-growing mega environments through the International Wheat Improvement Network (IWIN) and the Cereal System Initiative for South Asia (CSISA) network, which included a total of 136 environments (site-year combinations) in major spring wheat-growing countries such as Bangladesh, China, Egypt, India, Iran, Mexico, Nepal, and Pakistan.
Thanda Dhliwayo Edna Mageto Michael Olsen Jose Crossa Prasanna Boddupalli XUECAI ZHANG (2020, [Dataset])
An association-mapping panel (DTMA) and two DH populations (DH1 and DH2) were used in the current study, which in total includes 487 materials. The dataset includes three types of files. One is the genotype of 487 lines sequenced by GbS, named DTMA_DH2_DH3-955690.hmp.txt; one is the genotype of 487 lines sequenced by rAmpSeq named genotype-rAmpSeq.csv; and the third type of files are the phenotypic data files named DH1-phenotype.csv, DH2-phenotype.csv and DTMA-phenotype.csv.
6th Wheat Yield Collaboration Yield Trial
Matthew Paul Reynolds Thomas Payne (2020, [Dataset])
The WYCYT international nurseries are the result of research conducted to raise the yield potential of spring wheat through the strategic crossing of physiological traits related to source and sink potential in wheat. These trials have been phenotyped in the major wheat-growing mega environments through the International Wheat Improvement Network (IWIN) and the Cereal System Initiative for South Asia (CSISA) network, which included a total of 136 environments (site-year combinations) in major spring wheat-growing countries such as Bangladesh, China, Egypt, India, Iran, Mexico, Nepal, and Pakistan.
47th International Bread Wheat Screening Nursery MAS data
Susanne Dreisigacker (2017, [Dataset])
The International Bread Wheat Screening Nursery (IBWSN) is designed to rapidly assess a large number of advanced generation (F3-F7) lines of spring bread wheat under Mega-environment 1 (ME1) which represents diversity for a wide range of latitudes, climates, daylengths, fertility conditions, water management, and (most importantly) disease conditions. The distribution of these nurseries is deliberately biased toward the major spring wheat regions of the world where the diseases of wheat are of high incidence. It is distributed to 180 locations and contains 300-450 entries.
IWIN-DAP: An Excel macro to analyze CIMMYT International Wheat Trial data
Thomas Payne (2016, [Dataset])
This tutorial explains how to use the IWIN-DAP, which is an Add-In to Microsoft Excel 2010, to analyze data from CIMMYT’s International Wheat Information System. IWIN-DAP is an illustration of an alternative, quick and easy approach allowing the use of Excel to analyze multi-location trials from CIMMYT international nurseries. This tutorial explains, step by step, how to install the Add-in, download the data from CIMMYT website, and run a variety of analyses. The macro operates at the single-trait level.
38th International Durum Screening Nursery
Thomas Payne (2020, [Dataset])
International Durum Screening Nursery (IDSN) distributes diverse CIMMYT-bred spring durum wheat germplasm adapted to irrigated and variable moisture stressed environments. Disease resistance and high industrial pasta quality are essential traits possessed in this germplasm. It is distributed to 100 locations, and contains 150 entries.
Genetic and phenotypic data of Syn/Weebil recombinant inbred lines under drought and heat stresses
Caiyun Liu Sivakumar Sukumaran Carolina Sansaloni Susanne Dreisigacker Matthew Paul Reynolds (2019, [Dataset])
We studied a RIL population of 276 entries derived from a cross between SYN-D × Weebill 1. SYN-D (Croc 1/Aegilops Squarrosa (224)//Opata) is a synthetic derived hexaploid wheat with dark green broad leaves without wax. The RILs did not segregate for Rht-B1, Rht-D1, Ppd-A1, Ppd-D1, Vrn-A1, Vrn-A1, Vrn-D1, and Eps-D1 genes and showed a narrow range of phenology, which avoids the confounding effect of phenology to identify QTL that may otherwise be masked by crop development. The RILs population was phenotyped in a randomized lattice design with two replications under four environments -drought (2009-2010, D10), heat (2009-2010, H10), heat + drought (2011-2012 and 2012-2013, HD12 and HD13)- at the Campo Experimental Norman E. Borlaug (CENEB), CIMMYT’s experimental station at Ciudad Obregón, Sonora, Northwest Mexico (27.20°N, 109.54°W, 38 masl). Drought stress (D) was applied by normal planting (late November) with significantly reduced irrigation (total water supply < 200 mm); heat stress (H) was applied by late sowing (late February) with supplementary irrigation (total water supply > 700 mm) to avoid the effect of drought; the combined stress (H+D) was applied by delayed planting date (late February) with reduced irrigation (total water supply < 200 mm).
21st Semi-Arid Wheat Screening Nursery
Ravi Singh Thomas Payne (2019, [Dataset])
The Semi-Arid Wheat Screening Nursery (SAWSN) is a single replicate trial that contains diverse spring bread wheat (Triticum aestivum) germplasm adapted to low rainfall, drought prone, semi-arid environments typically receiving less than 500 mm of water available during the cropping cycle. CIMMYT's breeding approach attempts to combine high yield potential with drought resistance for ME4. The combination of water-use efficiency and water responsive traits plus yield potential is important in drought environments where rainfall is frequently erratic across years. When rains are significantly above average in certain years, the crop must respond appropriately (water responsive) with higher yields, while expressing resistance to the wider suite of diseases that appear under more favorable conditions. Constrains including leaf, stem and yellow rusts, and Septoria spp., Fusarium spp., Pyrenophora tritici-repentis tan spot, nematodes and root rots must be considered. It is distributed to 120 locations, and contains 150-250 entries.