Búsqueda avanzada


Área de conocimiento




135 resultados, página 3 de 10

Avances en Agricultura Sustentable : Resultados de plataformas de investigación Hub Pacífico Norte 2010-2021

Simon Fonteyne Nele Verhulst (2022, [Libro])

Esta edición presenta los resultados de la red de plataformas en el Hub Pacífico Norte, misma que resulta de la colaboración entre el CIMMYT; el Patronato para la Investigación y Experimentación Agrícola del Estado de Sonora A.C. (PIEAES); el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP); la Asociación de Agricultores del Río Sinaloa Poniente (AARSP); la Asociación de Agricultores del Río Fuerte Sur (AARFS); la Asociación de Agricultores del Río Culiacán (AARC); la Universidad Autónoma de Sinaloa (UAS); Servicios Agrofinancieros del Norte S.A. de C.V. (SAFINSA); el Club de Labranza de Conservación del Valle del Évora; Granera del Noroeste S.A. de C.V; y el Instituto de Ciencias Agrícolas de la Universidad Autónoma de Baja California (ICA-UABC). Los lectores podrán encontrar en este libro los resultados de las plataformas con más tiempo de operación, en donde ya se han podido generar suficientes datos para sacar conclusiones basadas en evidencias sólidas. Esperamos que el libro pueda servir de inspiración a los productores para que busquen que sus actividades en el campo sean más productivas, rentables y sustentables.

Plataformas de Investigación Maíz Amarillo Pulgón Áreas de extensión Módulos demostrativos Autosuficiencia Alimentaria Uso de Insumos Ganancias para el Productor Nodos de Innovación CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURA DE CONSERVACIÓN COSTOS DE PRODUCCIÓN EUTROFIZACIÓN MONOCULTIVO DEGRADACIÓN DEL SUELO CONTAMINACIÓN PLAGUICIDAS CAMBIO CLIMÁTICO PLATAFORMAS DE INNOVACIÓN EXTENSIÓN AGRÍCOLA AUTOSUFICIENCIA INSUMOS AGRÍCOLAS CONSERVATION AGRICULTURE PRODUCTION COSTS EUTROPHICATION MONOCULTURE SOIL DEGRADATION CONTAMINATION PESTICIDES CLIMATE CHANGE INNOVATION PLATFORMS AGRICULTURAL EXTENSION SELF-SUFFICIENCY FARM INPUTS

Geospatial analysis of the distribution of empty spaces located in Nuevo Laredo, Tamaulipas

Claudio Curzio HECTOR DE LA TORRE GUTIERREZ (2021, [Artículo, Artículo])

Reflect about urban empty spaces means looking around all these lots that are distributed in different geographical points of the cities and are characterized because they are still waiting to be built, therefore, they are vacant, and also these spaces are empty in the sense of not provide any function. In this sense, the objective of this article is to present a methodological proposal specially designed to study this type of urban elements from the particular point of view of urban geography and spatial analysis. Specifically, through a series of surveys, both digital and physical, the various urban voids located in the city of Nuevo Laredo were recorded, thereby creating a database that included a total of 3,836 case studies. In this way, using different types of statistical techniques and spatial models, it was possible to obtain and interpret the results, managing to identify exactly what were the main patterns and characteristics of said geographic distribution.

empty spaces urban vacant lots geo-spatial analysis urban geography border in Nuevo Laredo Vacíos urbanos lotes baldíos análisis geo-espacial geografía urbana frontera en Nuevo Laredo Geografía urbana economía urbana morfología urbana CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA

The fate of rice crop residues and context-dependent greenhouse gas emissions: Model-based insights from Eastern India

Sonam Sherpa virender kumar Andrew Mcdonald (2024, [Artículo])

Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a −0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative ‘no burn’ residue management practices.

Soil Carbon Rice Residue Burning Life Cycle Assessment CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL CARBON RICE LIFE CYCLE GREENHOUSE GASES CLIMATE CHANGE

Offshore wind energy climate projection using UPSCALE climate data under the RCP8.5 emission scenario

MARKUS SEBASTIAN GROSS (2016, [Artículo])

In previous work, the authors demonstrated how data from climate simulations can be utilized to estimate regional wind power densities. In particular, it was shown that the quality of wind power densities, estimated from the UPSCALE global dataset in offshore regions of Mexico, compared well with regional high resolution studies. Additionally, a link between surface temperature and moist air density in the estimates was presented. UPSCALE is an acronym for UK on PRACE (the Partnership for Advanced Computing in Europe)-weather-resolving Simulations of Climate for globAL Environmental risk. The UPSCALE experiment was performed in 2012 by NCAS (National Centre for Atmospheric Science)- Climate, at the University of Reading and the UK Met Office Hadley Centre. The study included a 25.6-year, five-member ensemble simulation of the HadGEM3 global atmosphere, at 25km resolution for present climate conditions. The initial conditions for the ensemble runs were taken from consecutive days of a test configuration. In the present paper, the emphasis is placed on the single climate run for a potential future climate scenario in the UPSCALE experiment dataset, using the Representation Concentrations Pathways (RCP) 8.5 climate change scenario. Firstly, some tests were performed to ensure that the results using only one instantiation of the current climate dataset are as robust as possible within the constraints of the available data. In order to achieve this, an artificial time series over a longer sampling period was created. Then, it was shown that these longer time series provided almost the same results than the short ones, thus leading to the argument that the short time series is sufficient to capture the climate. Finally, with the confidence that one instantiation is sufficient, the future climate dataset was analysed to provide, for the first time, a projection of future changes in wind power resources using the UPSCALE dataset. It is hoped that this, in turn, will provide some guidance for wind power developers and policy makers to prepare and adapt for climate change impacts on wind energy production. Although offshore locations around Mexico were used as a case study, the dataset is global and hence the methodology presented can be readily applied at any desired location. © Copyright 2016 Gross, Magar. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reprod

atmosphere, climate change, Europe, Mexico, sampling, time series analysis, university, weather, wind power, climate, risk, theoretical model, wind, Climate, Models, Theoretical, Risk, Wind CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA