Filtrar por:
Tipo de publicación
- Artículo (91)
- Tesis de maestría (24)
- Documento de trabajo (8)
- Tesis de doctorado (4)
- Artículo (3)
Autores
- Velitchko Tzatchkov (12)
- WALDO OJEDA BUSTAMANTE (10)
- CARLOS FUENTES RUIZ (9)
- VICTOR HUGO ALCOCER YAMANAKA (9)
- MANUEL ZAVALA TREJO (6)
Años de Publicación
Editores
- Instituto Mexicano de Tecnología del Agua (30)
- El autor (14)
- CICESE (6)
- Colegio de Postgraduados. (5)
- Colegio de Postgraduados (4)
Repositorios Orígen
- Repositorio institucional del IMTA (66)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (28)
- Repositorio Digital CIDE (13)
- Repositorio Institucional CICESE (9)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (3)
Tipos de Acceso
- oa:openAccess (131)
Idiomas
Materias
- INGENIERÍA Y TECNOLOGÍA (50)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (41)
- CIENCIAS SOCIALES (33)
- Modelos matemáticos (29)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (18)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Marlee Labroo Jeffrey Endelman Dorcus Gemenet Christian Werner Robert Gaynor GIOVANNY COVARRUBIAS-PAZARAN (2023, [Artículo])
Reciprocal Recurrent Selection Clonal Diploids CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DIPLOIDY BREEDING HETEROSIS STOCHASTIC MODELS
Carlo Montes Anton Urfels Eunjin Han Balwinder-Singh (2023, [Artículo])
Rainy Season TIMESAT APSIM Agricultural Production Systems Simulator Climate Adaptation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RICE WHEAT MONSOONS WET SEASON CROP MODELLING CLIMATE CHANGE ADAPTATION
Roberto Fritsche-Neto Marlee Labroo (2024, [Artículo])
Genomic Prediction Reciprocal Recurrent Selection Heterotic Pools CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA STOCHASTIC MODELS RICE HYBRIDS GENETIC IMPROVEMENT GENETIC GAIN BREEDING PROGRAMMES
C.M. Parihar Dipaka Ranjan Sena Prakash Chand Ghasal Shankar Lal Jat Yashpal Singh Saharawat Mahesh Gathala Upendra Singh Hari Sankar Nayak (2024, [Artículo])
Context: Agricultural field experiments are costly and time-consuming, and their site-specific nature limits their ability to capture spatial and temporal variability. This hinders the transfer of crop management information across different locations, impeding effective agricultural decision-making. Further, accurate estimates of the benefits and risks of alternative crop and nutrient management options are crucial for effective decision-making in agriculture. Objective: The objective of this study was to utilize the Crop Environment Resource Synthesis CERES-Wheat model to simulate crop growth, yield, and nitrogen dynamics in a long-term conservation agriculture (CA) based wheat system. The study aimed to calibrate the model using data from a field experiment conducted during the 2019-20-2020-21 growing seasons and evaluation it with independent data from the year 2021–22. Method: Crop simulation models, such as the Crop Environment Resource Synthesis CERES-Wheat (DSSAT v 4.8), may provide valuable insights into crop growth and nitrogen dynamics, enabling decision makers to understand and manage production risk more effectively. Therefore, the present study employed the CERES-Wheat (DSSAT v 4.8) model and calibrated it using field data, including plant phenological phases, leaf area index, aboveground biomass, and grain yield from the 2019-20-2020-21 growing seasons. An independent dataset from the year 2021–22 was used for model evaluation. The model was used to investigate the relationship between growing degree days (GDD), temperature, nitrate and ammonical concentration in soil, and nitrogen uptake by the crop. Additionally, the study explored the impact of contrasting tillage practices and fertilizer nitrogen management options on wheat yields. The experimental site is situated at ICAR-Indian Agricultural Research Institute (IARI), New Delhi, representing Indian Trans-Gangetic Plains Zone (28o 40’N latitude, 77o 11’E longitude and an altitude of 228 m above sea level). The treatments consist of four nitrogen management options, viz., N0 (zero nitrogen), N150 (150 kg N ha−1 through urea), GS (Green seeker based urea application) and USG (urea super granules @150 kg N ha−1) in two contrasting tillage systems, i.e., CA-based zero tillage (ZT) and conventional tillage (CT). Result: The outcomes exhibited favorable agreement between the model’s simulations and the observed data for crop phenology (With less than 2 days variation in 50% onset of flowering), grain and biomass yield (Root mean square error; RMSE 336 kg ha−1 and 649 kg ha−1, respectively), and leaf area index (LAI) (RMSE 0.28 & normalized RMSE; nRMSE 6.69%). The model effectively captured the nitrate-N (NO3−-N) dynamics in the soil profile, exhibiting a remarkable concordance with observed data, as evident from its low RMSE = 12.39 kg ha−1 and nRMSE = 13.69%. Moreover, as it successfully simulated the N balance in the production system, the nitrate leaching and ammonia volatilization pattern as described by the model are highly useful to understand these critical phenomena under both conventional tillage (CT) and CA-based Zero Tillage (ZT) treatments. Conclusion: The study concludes that the DSSAT-CERES-Wheat model has significant potential to assess the impacts of tillage and nitrogen management practices on crop growth, yield, and soil nitrogen dynamics in the western Indo-Gangetic Plains (IGP) region. By providing reliable forecasts within the growing season, this modeling approach can facilitate better planning and more efficient resource management. Future implications: The successful implementation of the DSSAT-CERES-Wheat model in this study highlights its applicability in assessing crop performance and soil dynamics. Future research should focus on expanding the model’s capabilities by reducing its sensitivity to initial soil nitrogen levels to refine its predictions further. Moreover, the model’s integration with decision support systems and real-time data can enhance its usefulness in aiding agricultural decision-making and supporting sustainable crop management practices.
Nitrogen Dynamics Mechanistic Crop Growth Models Crop Simulation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA NITROGEN CONSERVATION AGRICULTURE WHEAT MAIZE CROP GROWTH RATE SIMULATION MODELS
Vida de un muerto. Entre nuestro universo y el otro
Nicolás Amoroso Boelcke (2023, [Capítulo de libro])
Capítulo número 3 de la Sección Imágenes y representaciones.
Se analiza el film Raymond & Ray, desde la construcción de la vida de Harris, personaje muerto desde el principio del film, y esto se hace mediante las palabras, no con escenas de la infancia que mencionan Raymond y Ray ni tampoco en las acciones que participa con los otros perso¬najes que hablan de él. Harris habita el filme desde las palabras.
Semiotics and motion pictures. Culture--Semiotic models. Dialogue analysis. Semiótica y cine. Análisis del diálogo. NX180.S46 HUMANIDADES Y CIENCIAS DE LA CONDUCTA CIENCIAS DE LAS ARTES Y LAS LETRAS TEORÍA, ANÁLISIS Y CRÍTICA DE LAS BELLAS ARTES CINEMATOGRAFÍA
Calibrated multi-model ensemble seasonal prediction of Bangladesh summer monsoon rainfall
Nachiketa Acharya Carlo Montes Timothy Joseph Krupnik (2023, [Artículo])
Bangladesh summer monsoon rainfall (BSMR), typically from June through September (JJAS), represents the main source of water for multiple sectors. However, its high spatial and interannual variability makes the seasonal prediction of BSMR crucial for building resilience to natural disasters and for food security in a climate-risk-prone country. This study describes the development and implementation of an objective system for the seasonal forecasting of BSMR, recently adopted by the Bangladesh Meteorological Department (BMD). The approach is based on the use of a calibrated multi-model ensemble (CMME) of seven state-of-the-art general circulation models (GCMs) from the North American Multi-Model Ensemble project. The lead-1 (initial conditions of May for forecasting JJAS total rainfall) hindcasts (spanning 1982–2010) and forecasts (spanning 2011–2018) of seasonal total rainfall for the JJAS season from these seven GCMs were used. A canonical correlation analysis (CCA) regression is used to calibrate the raw GCMs outputs against observations, which are then combined with equal weight to generate final CMME predictions. Results show, compared to individual calibrated GCMs and uncalibrated MME, that the CCA-based calibration generates significant improvements over individual raw GCM in terms of the magnitude of systematic errors, Spearman's correlation coefficients, and generalised discrimination scores over most of Bangladesh areas, especially in the northern part of the country. Since October 2019, the BMD has been issuing real-time seasonal rainfall forecasts using this new forecast system.
Multi-Model Ensemble Seasonal Forecasting CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE SERVICES FORECASTING MONSOONS
João Vasco Silva Pytrik Reidsma (2024, [Artículo])
Nitrogen (N) management is essential to ensure crop growth and to balance production, economic, and environmental objectives from farm to regional levels. This study aimed to extend the WOFOST crop model with N limited production and use the model to explore options for sustainable N management for winter wheat in the Netherlands. The extensions consisted of the simulation of crop and soil N processes, stress responses to N deficiencies, and the maximum gross CO2 assimilation rate being computed from the leaf N concentration. A new soil N module, abbreviated as SNOMIN (Soil Nitrogen for Organic and Mineral Nitrogen module) was developed. The model was calibrated and evaluated against field data. The model reproduced the measured grain dry matter in all treatments in both the calibration and evaluation data sets with a RMSE of 1.2 Mg ha−1 and the measured aboveground N uptake with a RMSE of 39 kg N ha−1. Subsequently, the model was applied in a scenario analysis exploring different pathways for sustainable N use on farmers' wheat fields in the Netherlands. Farmers' reported yield and N fertilization management practices were obtained for 141 fields in Flevoland between 2015 and 2017, representing the baseline. Actual N input and N output (amount of N in grains at harvest) were estimated for each field from these data. Water and N-limited yields and N outputs were simulated for these fields to estimate the maximum attainable yield and N output under the reported N management. The investigated scenarios included (1) closing efficiency yield gaps, (2) adjusting N input to the minimum level possible without incurring yield losses, and (3) achieving 90% of the simulated water-limited yield. Scenarios 2 and 3 were devised to allow for soil N mining (2a and 3a) and to not allow for soil N mining (2b and 3b). The results of the scenario analysis show that the largest N surplus reductions without soil N mining, relative to the baseline, can be obtained in scenario 1, with an average of 75%. Accepting negative N surpluses (while maintaining yield) would allow maximum N input reductions of 84 kg N ha−1 (39%) on average (scenario 2a). However, the adjustment in N input for these pathways, and the resulting N surplus, varied strongly across fields, with some fields requiring greater N input than used by farmers.
Crop Growth Models WOFOST CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS NITROGEN-USE EFFICIENCY WINTER WHEAT SOIL WATER
Optimización del proceso de estampado en la empresa Rivian: aplicación del método SMED
Diego Rodríguez Arroyo Luis Alberto Cáceres Díaz ISABEL PEREYRA LAGUNA (2023, [Artículo])
En la era actual, la industria automotriz se encuentra en un estado de transformación constante, impulsado principalmente por la rápida integración de tecnologías emergentes. Aquellas empresas que logran destacar son las que no sólo innovan en diseño y funcionalidad, sino también en la eficiencia productiva. Rivian, una prominente empresa estadounidense especializada en vehículos eléctricos destaca por sus audaces diseños y su compromiso con la sostenibilidad. No obstante, al adentrarse en el funcionamiento interno de sus plantas de producción, surgen ciertos desafíos. En particular, en las instalaciones de la planta de Rivian, se ha detectado que el proceso de estampado, esencial para modelar las piezas de acero de sus vehículos, representa un cuello de botella con gran área de oportunidad que requiere una pronta intervención debido al tiempo muerto que impacta a la producción, entre éstas, la alimentación del material a la prensa de estampado, donde actualmente existen muchas actividades manuales que ocasionan tiempo extra de operación, el cual se puede reducir mediante la automatización de algunas operaciones. En este artículo, se presenta un desarrollo detallado sobre la implementación y optimización del proceso en una prensa de estampado, utilizando la metodología intercambio de troqueles en un solo minuto (SMED por sus siglas en inglés) para maximizar y mejorar la eficiencia de los recursos y satisfacer la demanda de producción. A través de esta herramienta de Manufactura Esbelta, se aplican sistemáticamente las etapas y ciclos del SMED con el objetivo de realizar el cambio de modelo en una maquina en un tiempo objetivo de 12 minutos. Este trabajo de investigación describe una serie de desafíos y las soluciones implementadas en diferentes estaciones de la prensa, buscando incrementar su eficiencia y minimizar los riesgos para los operadores. Además, se enfoca en reducir el material defectuoso producido en la prensa, lo que contribuye a un aumento en la calidad y una disminución en los costos por unidad. Esto tuvo como resultado ahorros de miles de dólares en costos variables de la prensa.
In the current era, the automotive industry is in a state of constant transformation, caused primarily by the rapid integration of emerging technologies. Those companies that can stand out are those that not only innovate in design and functionality but also productive efficiency. Rivian, a prominent American company specializing in electric vehicles, is known for its bold designs and commitment to sustainability. However, when delving into the inner workings of your production plants, certain challenges arise. At the Rivian plant facilities, it has been detected that the stamping process, essential for modeling the steel parts of its vehicles, represents a bottleneck in the process with a large area of opportunity that requires prompt intervention due to high downtime in the press line that impacts production, specifically in the setting of material, there are a lot of manual operations that cause a lot of overtime that can be reduced with automated processes. In this article, a detailed development on the implementation and optimization of the process in a stamping press is presented, using the SMED methodology (Single Minute Exchange Die) to maximize and improve resource efficiency and meet production demand. Through this Lean Manufacturing tool, the stages, and cycles of the SMED are systematically applied to carry out the model change in a machine in a target time of 12 minutes. This research work describes a series of challenges and solutions implemented in different press stations, seeking to increase their efficiency and minimize the risks for operators. Additionally, it focuses on reducing defective material produced on the press, which contributes to an increase in quality and a decrease in unit costs. This resulted in savings of thousands of dollars in variable press costs.
El primer autor agradece el apoyo de CIATEQ y de la empresa y grupo de trabajo en Rivian, que con todo el análisis de datos y la instalación de las diversas mejoras siempre hubo el apoyo y la comunicación correcta como equipo de trabajo. Además de agradecer el gran apoyo del asesor el Dr. Luis Cáceres y la Dra. Isabel Pereyra por su constante retroalimentación y el fuerte apoyo durante estos meses de trabajo en este artículo sobre SMED, mejorando en el análisis y representación de datos ya que con los conocimientos y la experiencia de ambos se facilitó la realización y culminación de este proyecto. De igual manera los autores agradecen a la Revista Politécnica de Aguascalientes por permitir la publicación de este artículo.
Cambio de modelo SMED Automatización Optimización Technology stamping Automation SMED INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS
Indicadores técnicos para la conversión productiva de agricultura de temporal a riego
MARIA DOLORES OLVERA SALGADO OSCAR ALPUCHE GARCÉS Mario Alberto Montiel Gutiérrez (2013, [Artículo])
La construcción de una presa hidroeléctrica en la costa de Oaxaca, México, puede propiciar cambios en la cantidad de agua disponible para riego, por lo tanto se requiere determinar la orientación productiva de la zona con factibilidad de riego para asegurar el volumen de agua superficial necesario para los cultivos actuales y futuros en la zona de influencia. Se realiza a partir de modelos de finca agrícola y la aplicación del método comparativo con indicadores generados por el interés y experiencia productiva del agricultor local, la cobertura de sus necesidades básicas, la orientación de la política pública y la sustentabilidad de recursos, elementos importantes en la toma de decisiones.
Producción agrícola Modelo de finca Riego Disponibilidad de agua INGENIERÍA Y TECNOLOGÍA