Filtrar por:
Tipo de publicación
- Artículo (88)
- Objeto de congreso (22)
- Capítulo de libro (2)
- Libro (1)
- Documento de trabajo (1)
Autores
- Jose Crossa (10)
- Alison Bentley (7)
- Berhanu Tadesse Ertiro (5)
- Francisco Pinto (5)
- Leonardo Abdiel Crespo Herrera (5)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (111)
- Repositorio Institucional CICESE (1)
- Repositorio Institucional de Ciencia Abierta de la Universidad Autónoma de Guerrero (1)
- Repositorio institucional de la Universidad de Colima (1)
Tipos de Acceso
- oa:openAccess (114)
Idiomas
- eng (114)
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (112)
- BREEDING (31)
- WHEAT (28)
- MAIZE (27)
- BREEDING PROGRAMMES (14)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Visualising the pattern of long-term genotype performance by leveraging a genomic prediction model
Vivi Arief Ian Delacy Thomas Payne Kaye Basford (2022, [Artículo])
Factor Analytic Genotype-By-Year Historical Data Relationship Matrix CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOTYPES PLANT BREEDING SPRING WHEAT RESEARCH
Francisco Pinto Matthew Paul Reynolds Robert Furbank (2024, [Artículo])
Deep Learning Object-Based Image Analysis Optical Imagery CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE IMAGE ANALYSIS PLANT BREEDING REMOTE SENSING MACHINE LEARNING
Min Lin Sebastian Michel Hermann Buerstmayr sridhar bhavani Morten Lillemo (2023, [Artículo])
Wheat Yellow Rust Adult Plant Resistance Genome-Wide Association Study CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA RUSTS QUANTITATIVE TRAIT LOCI SPRING WHEAT BREEDING LINES
Exploring GWAS and genomic prediction to improve Septoria tritici blotch resistance in wheat
Admas Alemu Abebe Pawan Singh Aakash Chawade (2023, [Artículo])
Septoria Tritici Blotch Wheat Breeding Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOME-WIDE ASSOCIATION STUDIES MYCOSPHAERELLA GRAMINICOLA DISEASE RESISTANCE WHEAT PLANT GROWTH
Editorial: Genomic selection: Lessons learned and perspectives
Johannes Martini Sarah Hearne Valentin Wimmer Fernando Henrique Toledo (2022, [Artículo])
Genomic Selection Selection Gain Breeding Schemes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BREEDING PROGRAMMES MARKER-ASSISTED SELECTION GENOTYPE ENVIRONMENT INTERACTION PLANT BREEDING
Adefris Teklewold (2022, [Artículo])
Grain Yield Quality Protein Maize CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROSS-BREEDING INBRED LINES HETEROSIS PROTEIN QUALITY HYBRIDS
AGG-maize year 3 major achievements and next steps
Yoseph Beyene (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE BREEDING PROGRAMMES INNOVATION HYBRIDS GERMPLASM
Osval Antonio Montesinos-Lopez ABELARDO MONTESINOS LOPEZ RICARDO ACOSTA DIAZ Rajeev Varshney Jose Crossa ALISON BENTLEY (2022, [Artículo])
Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. In plant breeding, it has the potential to increase the speed and reduce the cost of selection. However, to optimize resources, sparse testing methods have been proposed. A common approach is to guarantee a proportion of nonoverlapping and overlapping lines allocated randomly in locations, that is, lines appearing in some locations but not in all. In this study we propose using incomplete block designs (IBD), principally, for the allocation of lines to locations in such a way that not all lines are observed in all locations. We compare this allocation with a random allocation of lines to locations guaranteeing that the lines are allocated to
the same number of locations as under the IBD design. We implemented this benchmarking on several crop data sets under the Bayesian genomic best linear unbiased predictor (GBLUP) model, finding that allocation under the principle of IBD outperformed random allocation by between 1.4% and 26.5% across locations, traits, and data sets in terms of mean square error. Although a wide range of performance improvements were observed, our results provide evidence that using IBD for the allocation of lines to locations can help improve predictive performance compared with random allocation. This has the potential to be applied to large-scale plant breeding programs.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA Bayes Theorem Genome Inflammatory Bowel Diseases Models, Genetic Plant Breeding
Associations between endogenous spike cytokinins and grain-number traits in spring wheat genotypes
Gemma Molero Carolina Rivera-Amado Matthew Paul Reynolds John Foulkes (2024, [Artículo])
Spike Cytokinins Grain Number Fruiting Efficiency Wheat Breeding CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SPIKES CYTOKININS GRAIN FRUITING HARVEST INDEX WHEAT PLANT BREEDING
Multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits
Osval Antonio Montesinos-Lopez Jose Crossa Francisco Javier Martin Vallejo (2018, [Artículo])
Deep Learning Genomic Prediction Bayesian Modeling Shared Data Resources CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BAYESIAN THEORY RESOURCES DATA BREEDING PROGRAMMES