Búsqueda avanzada


Área de conocimiento




100 resultados, página 4 de 10

Innovative approaches to integrating gender into conventional maize breeding: lessons from the Seed Production Technology for Africa project

Rachel Voss Jill Cairns Michael Olsen Esnath Tatenda Hamadziripi (2023, [Artículo])

The integration of gender concerns in crop breeding programs aims to improve the suitability and appeal of new varieties to both women and men, in response to concerns about unequal adoption of improved seed. However, few conventional breeding programs have sought to center social inclusion concerns. This community case study documents efforts to integrate gender into the maize-focused Seed Production Technology for Africa (SPTA) project using innovation history analysis drawing on project documents and the authors’ experiences. These efforts included deliberate exploration of potential gendered impacts of project technologies and innovations in the project’s approach to variety evaluation, culminating in the use of decentralized on-farm trials using the tricot approach. Through this case study, we illustrate the power of active and respectful collaborations between breeders and social scientists, spurred by donor mandates to address gender and social inclusion. Gender integration in this case was further facilitated by open-minded project leaders and allocation of funding for gender research. SPTA proved to be fertile ground for experimentation and interdisciplinary collaboration around gender and maize breeding, and has provided proof of concept for larger breeding projects seeking to integrate gender considerations.

Crop Breeding On-Farm Trials Tricot CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENDER CROPS BREEDING ON-FARM RESEARCH SOCIAL INCLUSION CITIZEN SCIENCE MAIZE

Big data, small explanatory and predictive power: Lessons from random forest modeling of on-farm yield variability and implications for data-driven agronomy

Martin van Ittersum (2023, [Artículo])

Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.

Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY

Review of Nationally Determined Contributions (NCD) of Vietnam from the perspective of food systems

Tek Sapkota (2023, [Documento de trabajo])

Over the past decades, Vietnam has significantly progressed and has transformed from being a food-insecure nation to one of the world’s leading exporters in food commodities, and from one of the world’s poorest countries to a low-middle-income country. The agriculture sector is dominated by rice and plays a vital role in food security, employment, and foreign exchange. Vietnam submitted its updated Nationally Determined Contributions (NDC) in 2022 based on the NDC 2020. There is a significant increase in greenhouse gas (GHG) emission reduction, towards the long-term goals identified in Vietnam’s National Climate Change Strategy to 2025, and efforts are being made to fulfil the commitments made at COP26. The Agriculture Sector is the second-largest contributor of GHG emissions in Vietnam, accounting for 89.75 MtCO2eq, which was about 31.6 percent of total emissions in 2014. Rice cultivation is the biggest source of emissions in the agriculture sector, accounting for 49.35% of emissions from agriculture. The total GHG removal from Land Use, Land Use Change and Forestry (LULUCF) in 2014 was -37.54 MtCO2eq, of which the largest part was from the forest land sub-sector (35.61 MtCO2eq), followed by removal from croplands (7.31 MtCO2eq) (MONRE 2019).

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS

Review of Nationally Determined Contributions (NCD) of Colombia from the perspective of food systems

Tek Sapkota (2023, [Documento de trabajo])

Food is a vital component of Colombia's economy. The impact of climate change on agriculture and food security in the country is severe. The effects have resulted in decreased production and in the productivity of agricultural soil. Desertification processes are accelerating and intensifying. Colombia's government formally submitted its Nationally Determined Contribution (NDC) on December 29, 2020. This paper examines Colombia's NDC from the standpoint of the food system.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE GREENHOUSE GAS EMISSIONS FOOD SYSTEMS LAND USE CHANGE AGRICULTURE POLICIES DATA ANALYSIS FOOD WASTES