Filtrar por:
Tipo de publicación
- Artículo (8)
Autores
- Govindan Velu (3)
- Angeline van Biljon (2)
- Maryke Labuschagne (2)
- Nakai Matongera (2)
- THOKOZILE NDHLELA (2)
Años de Publicación
Editores
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (6)
- Repositorio Institucional CICESE (1)
- Repositorio institucional del IMTA (1)
Tipos de Acceso
- oa:openAccess (8)
Idiomas
Materias
- BIOFORTIFICATION (6)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (6)
- ZINC (6)
- IRON (4)
- WHEAT (4)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
8 resultados, página 1 de 1
Metals pollution in El Limón lagoon, Chiapas, Mexico
MARIA TERESA LEAL ASCENCIO SAUL MIRANDA ALONSO Elena María Otazo Sanchez Francisco Prieto García (2009, [Artículo])
La laguna El Limón, en el municipio de Reforma, Chiapas, México, ha presentado mortandad masiva de peces, lo que llevó a realizar un estudio más profundo que determinara el grado de contaminación de la laguna, así como las causas posibles de los eventos. Los resultados muestran que en los sedimentos de la laguna las concentraciones promedio de Zn, Ni, Cr, Cd y Cu rebasan los límites recomendados en Canadá y Estados Unidos para evitar la aparición de efectos biológicos nocivos en especies acuáticas. Es de especial mención la acumulación de Zn, que presenta una concentración máxima de 1360 mg/kg, presumiblemente asociada al uso de este metal como catalizador en una planta procesadora de gas. Si bien las descargas industriales que vierten a la laguna cumplen con los estándares establecidos en México para metales, esto no ha sido suficiente para evitar su acumulación en los sedimentos, lo cual demuestra que las normas existentes para las descargas de aguas residual industrial deben aumentar sus restricciones y tomar en cuenta el tipo de cuerpo receptor al que vierten. En el caso del uso de agua residual o contaminada para riego, la acumulación puede darse en los suelos agrícolas, pasando eventualmente a los cultivos, lo que tampoco es deseable.
Lagunas Contaminación del agua Metales Zinc INGENIERÍA Y TECNOLOGÍA
Genomic approaches for improving grain zinc and iron content in wheat
Chandan Roy Govindan Velu (2022, [Artículo])
Genome-Wide Association Study New Breeding Techniques Genomic Selection CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION MARKER-ASSISTED SELECTION MALNUTRITION BREEDING QUANTITATIVE TRAIT LOCI MAPPING SPEED BREEDING ZINC IRON WHEAT
Nakai Matongera THOKOZILE NDHLELA Angeline van Biljon Casper Nyaradzai Kamutando Jill Cairns Frédéric Baudron Maryke Labuschagne (2023, [Artículo])
Micronutrient Variability Trait Correlations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE ZINC IRON BIOFORTIFICATION TRACE ELEMENTS CORRELATION
Localisation of iron and zinc in grain of biofortified wheat
Theodora Stewart Paul Anthony Sharp Govindan Velu Malcolm Hawkesford (2022, [Artículo])
Wheat Grain Micronutrients LA-ICP-MS Localization CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION IRON TRACE ELEMENTS WHEAT ZINC
Tilahun Amede Elizabeth Bailey Abdul Wahab Mossa Dereje Tirfessa MESFIN KEBEDE DESTA Getachew Agegnehu Tesfaye Shiferaw Sida Stephan Haefele R. Murray Lark Martin Broadley Samuel Gameda (2023, [Artículo])
Agronomic biofortification, encompassing the use of mineral and organic nutrient resources which improve micronutrient concentrations in staple crops is a potential strategy to promote the production of and access to micronutrient-dense foods at the farm level. However, the heterogeneity of smallholder farming landscapes presents challenges on implementing agronomic biofortification. Here, we test the effects of zinc (Zn)- and selenium (Se)-containing fertilizer on micronutrient concentrations of wheat (Triticum aestivum L.) and teff (Eragrostis tef (Zucc.) Trotter) grown under different landscape positions and with different micronutrient fertilizer application methods in the western Amhara region of Ethiopia. Field experiments were established in three landscape positions at three sites, with five treatments falling into three broad categories: (1) nitrogen (N) fertilizer rate; (2) micronutrient fertilizer application method; (3) sole or co-application of Zn and Se fertilizer. Treatments were replicated across five farms per landscape position and over two cropping seasons (2018 and 2019). Grain Zn concentration ranged from 26.6 to 36.4 mg kg−1 in wheat and 28.5–31.2 mg kg−1 in teff. Grain Se concentration ranged from 0.02 to 0.59 mg kg−1 in wheat while larger concentrations of between 1.01 and 1.55 mg kg−1 were attained in teff. Larger concentrations of Zn and Se were consistently attained when a foliar fertilizer was applied. Application of ⅓ nitrogen (N) yielded significantly larger grain Se concentration in wheat compared to a recommended N application rate. A moderate landscape effect on grain Zn concentration was observed in wheat but not in teff. In contrast, strong evidence of a landscape effect was observed for wheat and teff grain Se concentration. There was no evidence for any interaction of the treatment contrasts with landscape position except in teff, where an interaction effect between landscape position and Se application was observed. Our findings indicate an effect of Zn, Se, N, landscape position, and its interaction effect with Se on grain micronutrient concentrations. Agronomic biofortification of wheat and teff with micronutrient fertilizers is influenced by landscape position, the micronutrient fertilizer application method and N fertilizer management. The complexity of smallholder environmental settings and different farmer socio-economic opportunities calls for the optimization of nutritional agronomy landscape trials. Targeted application of micronutrient fertilizers across a landscape gradient is therefore required in ongoing agronomic biofortification interventions, in addition to the micronutrient fertilizer application method and the N fertilizer management strategy.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION LANDSCAPE SELENIUM ZINC WHEAT
Predicting zinc-enhanced maize hybrid performance under stress conditions
Nakai Matongera THOKOZILE NDHLELA Angeline van Biljon Maryke Labuschagne (2023, [Artículo])
Combined Stress Zinc Biofortification CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA HEAT STRESS DROUGHT STRESS HYBRIDS INBRED LINES ZINC BIOFORTIFICATION
Vinod Mishra arun joshi Ravi Singh Govindan Velu (2022, [Artículo])
Biofortified Wheat HarvestPlus Grain Yield Grain Iron Concentration Grain Zinc Concentration CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION WHEAT GRAIN YIELDS ZINC IRON
ANAID MEZA VILLEZCAS (2019, [Artículo])
Vibrio cholerae is an important human pathogen causing intestinal disease with a high incidence in developing countries. V. cholerae can switch between planktonic and biofilm lifestyles. Biofilm formation is determinant for transmission, virulence and antibiotic resistance. Due to the enhanced antibiotic resistance observed by bacterial pathogens, antimicrobial nanomaterials have been used to combat infections by stopping bacterial growth and preventing biofilm formation. In this study, the effect of the nanocomposites zeolite-embedded silver (Ag), copper (Cu), or zinc (Zn) nanoparticles (NPs) was evaluated in V. cholerae planktonic cells, and in two biofilm states: pellicle biofilm (PB), formed between air-liquid interphase, and surface-attached biofilm (SB), formed at solid-liquid interfaces. Each nanocomposite type had a distinctive antimicrobial effect altering each V. cholerae lifestyles differently. The ZEO-AgNPs nanocomposite inhibited PB formation at 4 μg/ml, and prevented SB formation and eliminated planktonic cells at 8 μg/ml. In contrast, the nanocomposites ZEO-CuNPs and ZEO-ZnNPs affect V. cholerae viability but did not completely avoid bacterial growth. At transcriptional level, depending on the nanoparticles and biofilm type, nanocomposites modified the relative expression of the vpsL, rbmA and bap1, genes involved in biofilm formation. Furthermore, the relative abundance of the outer membrane proteins OmpT, OmpU, OmpA and OmpW also differs among treatments in PB and SB. This work provides a basis for further study of the nanomaterials effect at structural, genetic and proteomic levels to understand the response mechanisms of V. cholerae against metallic nanoparticles. © 2019 Meza-Villezcas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
bacterial protein, copper nanoparticle, nanocomposite, OmpT protein, OmpU protein, OmpW protein, outer membrane protein A, silver nanoparticle, unclassified drug, zeolite, zinc nanoparticle, antiinfective agent, copper, metal nanoparticle, nanocompos BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA