Búsqueda avanzada


Área de conocimiento




Filtrar por:

Tipo de publicación

Autores

Años de Publicación

Editores

Repositorios Orígen

Tipos de Acceso

Idiomas

Materias

Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales

39 resultados, página 4 de 4

CuO-NPs Improve Biosynthesis of Bioactive Compounds in Lettuce

JAZMIN MONTSERRAT GAUCIN DELGADO Luis Guillermo Hernández Montiel Manuel Fortis Hernández JUAN JOSE REYES PEREZ José Antonio González Fuentes Pablo Preciado Rangel (2022, [Artículo])

"The application of metallic nanoparticles improves the yield and content of bioactive compounds in plants. The aim of the present study was to determine the effects of the foliar application of copper nanoparticles (CuO-NPs) in the yield and content of bioactive compounds in lettuce. Different concentrations of CuO-NPs (0, 0.5, 1, 2, 4, and 6 mg mL−1 ) were applied in lettuce. The yield, nutraceutical quality, and enzymatic activity were determined. Foliar spraying of CuO-NPs induced an increase in the biosynthesis of bioactive compounds. In addition to an increase in the activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) in lettuce plants, there were no negative effects on yield. Therefore, with the application of CuO-NPs, better quality lettuces are produced for the human diet due to the higher production of bioactive compounds."

nano-biofortification, nanoparticles, antioxidants, Lactuca sativa L. CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS AGROQUÍMICA REGULADORES DEL CRECIMIENTO DE LAS PLANTAS REGULADORES DEL CRECIMIENTO DE LAS PLANTAS

Obtención de materiales nanocompuestos semiconductorsemiconductor para producción de hidrógeno por fotocatálisis heterogénea

Obtaining semiconductor-semiconductor nanocomposite materials for hydrogen production by heterogeneous photocatalysis

Yilmair Rodríguez Santillán (2023, [Tesis de maestría])

La producción de hidrógeno mediante fotocatálisis heterogénea a través del fotorreformado de metanol ha surgido como una estrategia para abordar los desafíos energéticos y ambientales actuales. Este proceso combina la conversión de una mezcla metanol/agua, con la eficiencia de la fotocatálisis para generar hidrógeno limpio y renovable. Uno de los factores más importantes en el proceso de la fotocatálisis heterogénea, es la capacidad que presenta un semiconductor para absorber luz con energía dentro del rango del espectro visible. El g-C3N4 es uno de los materiales más estudiados recientemente para la producción de hidrógeno, ya que presenta una banda prohibida de 2.7 eV, aparte de una alta estabilidad química y térmica, así como un bajo costo de producción. Sin embargo, el g-C3N4 tiene limitaciones en su eficiencia debido a la rápida recombinación del par electrón/hueco (e- /h+), lo que reduce la tasa de producción de H2. Para superar esta limitación se suelen hacer modificaciones por medio de dopantes o formando uniones con otros semiconductores, como las que se hicieron en este trabajo. El nanocompuesto que se utilizó para la producción de H2 mediante el fotorreformado de metanol es el Pt/MnCo2S4/B-g-C3N4 que consiste en una estructura formada por nitruro de carbono grafítico dopado con boro (B-g-C3N4), sulfuro de manganeso-cobalto (MnCo2S4) y platino (Pt). El B-g-C3N4 actúa como el fotocatalizador clave en la reacción de producción de H2 ya que cuenta con una estructura de banda electrónica adecuada que le permite absorber luz solar y generar pares (e-/h+) para activar la reacción. El MnCo2S4 se empleó para favorecer la separación y migración de los portadores de carga. El papel del Pt fue el de acelerar la reacción de reducción para la formación de la molécula de H2. La serie de fotocatalizadores de Pt/MnCo2S4/B-g-C3N4 que fueron sintetizados, demostraron una alta estabilidad y actividad fotocatalítica en la producción de hidrógeno a partir del fotorreformado de metanol/agua, tanto en condiciones con luz UV como en condiciones con luz visible, permitiendo alcanzar una producción de 947.9 μmol g-1 h-1 y 716.4 μmol g-1 h- respectivamente.

Hydrogen production through heterogeneous photocatalysis via methanol photoreforming has emerged as a strategy to address current energy and environmental challenges. This process combines the conversion of a methanol/water mixture with the efficiency of photocatalyst to generate clean and renewable hydrogen. One of the most crucial factors in the heterogeneous photocatalysis process is the semiconductor's ability to absorb light within the visible spectrum energy range. Recently, g-C3N4 has been extensively studied for hydrogen production due to its 2.7 eV bandgap, high chemical and thermal stability, and low production cost. However, g-C3N4 has limitations in its efficiency due to the rapid recombination of electron/hole pairs (e-/h+), which reduces the H2 production rate. To overcome this limitation, modifications are often made through dopants or forming junctions with other semiconductors, as is done in this study. The nanocomposite used for hydrogen production via methanol photoreforming is Pt/MnCo2S4/B-g-C3N4, which consists of a structure composed of borondoped graphitic carbon nitride (B-g-C3N4), manganese-cobalt sulfide (MnCo2S4) and platinum (Pt). B-gC3N4 acts as the critical photocatalyst in the H2 production reaction. It possesses an appropriate electronic band structure that absorbs solar light and generates electron-hole pairs (e-/h+) to activate the reaction. MnCo2S4 was used to promote the separation and migration of charge carriers. The role of Pt is to accelerate the reduction reaction to form H2 molecules. The series of synthesized Pt/MnCo2S4/B-g-C3N4 photocatalysts demonstrated high stability and photocatalytic activity in hydrogen production via methanol/water photoreforming, both under UV and visible light conditions, achieving a production rate of 947.9 μmol g-1 h-1 and 716.4 μmol g-1 h-1, respectively.

hidrógeno, fotocatálisis, fotorreformado, metanol, nanocompuesto hydrogen, photocatalyst, photoreforming, methanol, nanocomposite INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE MATERIALES PROPIEDADES DE LOS MATERIALES PROPIEDADES DE LOS MATERIALES

Effect of antimicrobial nanocomposites on Vibrio cholerae lifestyles: Pellicle biofilm, planktonic and surface-attached biofilm

ANAID MEZA VILLEZCAS (2019, [Artículo])

Vibrio cholerae is an important human pathogen causing intestinal disease with a high incidence in developing countries. V. cholerae can switch between planktonic and biofilm lifestyles. Biofilm formation is determinant for transmission, virulence and antibiotic resistance. Due to the enhanced antibiotic resistance observed by bacterial pathogens, antimicrobial nanomaterials have been used to combat infections by stopping bacterial growth and preventing biofilm formation. In this study, the effect of the nanocomposites zeolite-embedded silver (Ag), copper (Cu), or zinc (Zn) nanoparticles (NPs) was evaluated in V. cholerae planktonic cells, and in two biofilm states: pellicle biofilm (PB), formed between air-liquid interphase, and surface-attached biofilm (SB), formed at solid-liquid interfaces. Each nanocomposite type had a distinctive antimicrobial effect altering each V. cholerae lifestyles differently. The ZEO-AgNPs nanocomposite inhibited PB formation at 4 μg/ml, and prevented SB formation and eliminated planktonic cells at 8 μg/ml. In contrast, the nanocomposites ZEO-CuNPs and ZEO-ZnNPs affect V. cholerae viability but did not completely avoid bacterial growth. At transcriptional level, depending on the nanoparticles and biofilm type, nanocomposites modified the relative expression of the vpsL, rbmA and bap1, genes involved in biofilm formation. Furthermore, the relative abundance of the outer membrane proteins OmpT, OmpU, OmpA and OmpW also differs among treatments in PB and SB. This work provides a basis for further study of the nanomaterials effect at structural, genetic and proteomic levels to understand the response mechanisms of V. cholerae against metallic nanoparticles. © 2019 Meza-Villezcas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

bacterial protein, copper nanoparticle, nanocomposite, OmpT protein, OmpU protein, OmpW protein, outer membrane protein A, silver nanoparticle, unclassified drug, zeolite, zinc nanoparticle, antiinfective agent, copper, metal nanoparticle, nanocompos BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA

Adsorption and Photocatalytic Degradation of Methylene Blue in Carbon Nanotubes: A Review with Bibliometric Analysis

Hugo Albeiro Saldarriaga Noreña MARIO ALFONSO MURILLO TOVAR JOSEFINA VERGARA SANCHEZ JEANNETE RAMIREZ APARICIO Lorena Magallón Cacho MARIA LUISA GARCIA BETANCOURT (2023, [Artículo])

Wastewater-containing dyes are an environmental problem. The prime source of dye pollutants is the textile industry, such as paper manufacturing, food processing, leather, pigments, etc. Dye removal from wastewater using nanotechnology has received attention in recent decades thanks to efficient nanomaterials improving traditional technologies. In recent years, multiple research reports on carbon nanotubes for dye removal and photocatalytic dye degradation provided substantial insight into the comprehension of nanotechnology and remediation. This work presents a review and bibliometric analysis of carbon nanotubes for dye removal and photocatalytic dye degradation, which have an environmental impact today. The bibliometric study showed that the current research tendency on carbon nanotubes applied in dye removal and photocatalysis is still growing. According to research, this work observed that carbon nanotubes for dye removal exhibit high removal and efficient photocatalysis activity, indicating the functionality of nanotechnology for environmental remediation. The analysis of the parameters involved in the removal studies, such as temperature and pH, showed adsorption behavior. The photodegradation of methylene blue demonstrated the photocatalytic activity of carbon nanotubes attributed to the sp2 lattice of graphitic configuration.

BIOLOGÍA Y QUÍMICA QUÍMICA adsorption; carbon nanotubes; methylene blue; photocatalysis; photodegradation of methylene blue

Fabricación de nanopartículas de oro dentro de óxido de aluminio (γ-Al2O3) nanoestructurado con cavidades esféricas

Manufacturing of Gold Nanoparticles within Nanostructured Aluminum Oxide (γ-Al2O3) with Spherical Cavities

Mariela de Jesús Franco Gallegos (2023, [Tesis de maestría])

Los catalizadores basados en nanopartículas de oro han generado gran interés, gracias a su capacidad de ser selectivos en la promoción de reacciones específicas o en la producción de productos deseados, minimizando la formación de productos secundarios no deseados; sus propiedades electrónicas únicas; y su utilización bajo condiciones ambientales. Sin embargo, la desventaja principal de los catalizadores de oro es la sinterización de las nanopartículas debido a su baja temperatura de fusión, lo que provoca la pérdida de actividad catalítica y la desactivación del catalizador. Una de lassoluciones que ofrece el uso de la nanociencia y la nanotecnología es la utilización de soportes nanoestructurados que den mejor estabilidad a las nanopartículas y las protejan de la desactivación. En este trabajo se sintetizaron catalizadores basados en nanopartículas de oro soportados y encapsulados en alúmina macroporosa, por un método de impregnación húmeda asistida por ultrasonido; un método sencillo, rápido y ecológico. El desempeño catalítico de materiales sintetizados se analizó mediante espectroscopía UV-Visible in-situ en la reducción de 4-Nitrofenol a 4-Aminofenol. Así mismo, se presentan las caracterizaciones por TEM, SEM, FT-IR, espectroscopía UV-Visible, y XRD de catalizadores obtenidos. Se obtuvieron catalizadores altamente activos con alto rendimiento gracias al uso de un soporte nanoestructurado.

Catalysts -based on gold nanoparticles have recently gained interest due to their ability to selectively promote specific catalytic reactions or produce desired products, while minimizing the formation of unwanted byproducts, their unique electronic properties, and their utilization under ambient conditions. However, the main drawback of gold catalysts is the sintering of nanoparticles due to their low melting temperature, which leads to loss of catalytic activity and catalyst deactivation. One of the solutions offered by nanoscience and nanotechnology is the use of nanostructured supports that provide better stability to the nanoparticles and protect them from deactivation. In this work, gold nanoparticle-based catalysts supported and encapsulated in macroporous alumina were synthesized using a simple, fast, and eco-friendly method of ultrasound-assisted wet impregnation. The catalytic performance of synthetized materials was evaluated by in-situ UV-Visible spectroscopy in the reduction of 4-Nitrophenol to 4-Aminophenol. In addition, their characterization by TEM, SEM, FT-IR, UV Visible spectroscopy and XRD are presented. Highly active catalysts with high performance were obtained thanks to the use of a nanostructured supports.

nanopartículas de oro, alúmina macroporosa, impregnación, reducción 4-NF gold nanoparticles, macroporous alumina, impregnation, 4-NF reduction INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE MATERIALES PROPIEDADES DE LOS MATERIALES PROPIEDADES DE LOS MATERIALES

Evaluación de la cinética de liberación de compuestos hidrofílicos y lipofílicos a partir de nanopartículas híbridas polímero-lípido

Evaluation of the release kinetics of hydrophilic and lipophilic compounds from polymer-lipid hybrid nanoparticles

Juan Pablo Carmona Almazán (2023, [Tesis de maestría])

En el tratamiento de enfermedades, la administración de dosis múltiples es una estrategia común para mantener la concentración de los fármacos dentro de un margen terapéutico. Sin embargo, la adherencia de los pacientes a este tipo de tratamiento puede ser un desafío, llevando a una administración irregular de dosis. Una alternativa utilizada para abordar este reto son las nanopartículas híbridas polímero/lípido(NPPLs), las cuales, con menos administraciones, tienen el potencial de alcanzar la dosis necesaria en el tratamiento, posibilitando entonces el incremento del apego al tratamiento. En nuestro proyecto, se llevó a cabo la síntesis de nanopartículas de ácido poli láctico-co-glicólico (PLGA) recubiertas de lecitina de soya, por medio de técnicas de nanoprecipitación y autoensamblaje. Además, integramos estas nanopartículas en una matriz polimérica a base de aerogeles de gelatina de manera que estuvieran distribuidas de manera homogénea y concentrada. Nuestro enfoque central radica en entender la cinética de liberación de un compuesto hidrofílico (ácido gálico) y uno lipofílico (quercetina) a partir de este sistema. Logramos sintetizar nanopartículas con un diámetro hidrodinámico de 100 ± 15 nm, 153 ± 33 y149±21 nm, en el caso de las nanopartículas vacías y cargadas con ácido gálico y cargadas con quercetina, respectivamente. La eficiencia de encapsulación del ácido gálico fue del 90 ± 5 % y de la quercetina fue del 70 ± 10 %. Los resultados que obtuvimos muestran que el ácido gálico sigue una cinética del modelo de Korsmeyer-Peppas, con un valor de n = 1.01 y la quercetina una cinética de primer orden. Dado que los compuestos encapsulados tuvieron una liberación más lenta con respecto a los compuestos libres en los aerogeles de gelatina, nuestro trabajo indica que el encapsulamiento en NPPLs de un compuesto bioactivo, independientemente de su naturaleza química, puede ayudar a retrasar su liberación y reducir el número de dosis administradas, en consecuencia, esto pudiera contribuir a incrementar el apego de un paciente al tratamiento.

In the treatment of diseases, the administration of multiple doses is a common strategy to maintain drug concentrations within a therapeutic range. However, patient adherence to this type of treatment can be challenging, resulting in irregular dosing. An alternative approach used to address this challenge involves polymer/lipid hybrid nanoparticles (NPPLs), which have the potential to achieve the necessary drug dose with fewer administrations, thereby increasing treatment adherence. In our project, we synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with soy lecithin using nanoprecipitation and self-assembly techniques. These nanoparticles were then integrated into a polymer matrix based on gelatin aerogels to ensure homogeneous and concentrated distribution. Our main focus was to understand the release kinetics of a hydrophilic compound (gallic acid) and a lipophilic one (quercetin) from this system. We successfully synthesized nanoparticles with a hydrodynamic diameter of 100 ± 15 nm, 153 ± 33 nm, and 149 ± 21 nm for empty nanoparticles, gallic acid-loaded, and quercetin-loaded nanoparticles, respectively. The encapsulation efficiency was 90 ± 5 % for gallic acid and 70 ± 10 % for quercetin. The results we obtained indicate that gallic acid follows Korsmeyer-Peppas kinetics with a value of n = 1.01, while quercetin exhibits first-order kinetics. Since the encapsulated compounds showed slower release compared to free compounds in gelatin aerogels, our work suggests that encapsulation in NPPLs with a bioactive compound, regardless of its chemical nature, can help delay its release and reduce the number of doses administered. Consequently, this could contribute to improve patient treatment adherence.

nanopartículas híbridas, cinética de liberación, sistemas poliméricos, PLGA/lecitina, compuestos hidrofílicos y lipofílicos hybrid nanoparticles, release kinetics, polymeric systems, PLGA/lecithin, hydrophilic and lipophilic compounds INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS INGENIERÍA Y TECNOLOGÍA QUÍMICAS ANÁLISIS DE POLÍMEROS ANÁLISIS DE POLÍMEROS

Dual function of EDTA with silver nanoparticles for root canal treatment–A novel modification

JUAN MANUEL MARTINEZ ANDRADE (2018, [Artículo])

The chelating and antimicrobial capacity of a novel modification of 17% EDTA with silver nanoparticles (AgNPs) (EDTA-AgNPs) was evaluated in-vitro for root canal treatment (RCT). The EDTA-AgNPs solution was characterized by UV-Vis spectroscopy, ?-potential and high-resolution transmission electron microscopy (HRTEM). Antimicrobial capacity was evaluated against Candida albicans and Staphylococcus aureus in planktonic and biofilm cells by broth macrodilution (24 h) and XTT assays, (1, 10 and 30 min) respectively. The chelating capacity of EDTA-AgNPs was assessed indirectly (smear layer removal) and directly (demineralizing effect) in bovine dentin at two silver concentrations, 16 and 512 ?g/ ml at 1 and 10 minutes of exposure time. Smear layer removal was evaluated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The demineralizing effect was determined by atomic absorption spectroscopy (AAS), microhardness test (MH) and X-ray diffractometer (XRD). Synthesized AgNPs were quasi-spherical in shape with an average size of 13.09 ± 8.05 nm. 17% EDTA-AgNPs was effective to inhibit C. albicans and S. aureus in planktonic and biofilm cultures. The smear layer removal and demineralizing effect were similar between 17% EDTA-AgNPs and 17% EDTA treatments. The 17% EDTA-AgNPs solution proved to be an effective antimicrobial agent, and has a similar chelating capacity to 17% EDTA alone. These in-vitro studies strongly suggest that EDTA-AgNPs could be used for effective smear layer removal, having an antimicrobial effect at the same time during RCT. © 2018 Martinez-Andrade et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

edetic acid, silver nanoparticle, edetic acid, metal nanoparticle, silver, antibacterial activity, antibiotic sensitivity, antifungal activity, antimicrobial activity, Article, atomic absorption spectrometry, atomic force microscopy, biofilm, bovine, BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA

Chronic toxicity of shrimp feed added with silver nanoparticles (Argovit-4®) in Litopenaeus vannamei and immune response to white spot syndrome virus infection

Carlos Rosendo Romo Quiñonez Píndaro Álvarez Ruiz CLAUDIO HUMBERTO MEJIA RUIZ NINA BOGDANCHIKOVA Alexey Pestryakov CARINA GAMEZ JIMENEZ WENCESLAO VALENZUELA QUIÑONEZ Magnolia Montoya Mejía EUSEBIO NAVA PEREZ (2022, [Artículo])

"In recent years, the application of silver nanoparticles (AgNPs) as antibacterial compounds has been widely used in human and veterinary medicine. In this work, we investigated the effects of AgNPs (Argovit-4 R ) as feed additives (feed-AgNPs) on shrimp (Litopenaeus vannamei) using three different methods: 1) chronic toxicity after 28 days of feeding, 2) Effects against white spot syndrome virus (WSSV) challenged by oral route, and 3) transcriptional responses of immune-related genes (PAP, ProPO, CTL-3, Crustin, PEN3, and PEN4) following WSSV infection. The results showed that the feed-AgNPs did not interfere with the growth and survival of shrimp. Also, mild lesions in the hepatopancreas were recorded, proportional to the frequency of the feed-AgNP supply. Challenge test versus WSSV showed that feeding every 7 days with feed-AgNPs reduced mortality, reaching a survival rate of 53%, compared to the survival rates observed in groups fed every 4 days, daily and control groups of feed-AgNPs for the 30%, 10%, and 7% groups, respectively. Feed-AgNPs negatively regulated the expression of PAP, ProPO, and Crustin genes after 28 days of treatment and altered the transcriptional responses of PAP, ProPO, CTL-3, and Crustin after WSSV exposure. The results showed that weekly feeding-AgNPs could partially prevent WSSV infection in shrimp culture. However, whether or not transcriptional responses against pathogens are advantageous remains to be elucidated."

Silver nanoparticles, Shrimp, Aquaculture, Chronic toxicity, WSSV, AgNP, Argovit, Litopenaeus vannamei , Silver fed, White spot syndrome virus BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA INMUNOLOGÍA INMUNIZACIÓN INMUNIZACIÓN

Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane

Roberto Vazquez-Munoz (2019, [Artículo])

The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10–12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6–7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance. © 2019 Vazquez-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ampicillin, antibiotic agent, aztreonam, beta lactam antibiotic, biapenem, chloramphenicol, kanamycin, silver nanoparticle, silver nitrate, antiinfective agent, metal nanoparticle, silver, antibiotic sensitivity, antimicrobial activity, Article, bact BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOFÍSICA BIOFÍSICA