Búsqueda avanzada


Área de conocimiento




43 resultados, página 3 de 5

Utilización eficiente del agua de lluvia mediante el diseño y trazo hidrológico de terrenos en áreas de precipitación limitada

HECTOR GREGORIO CORTES TORRES JOSE JAVIER RAMIREZ LUNA (2013, [Documento de trabajo])

Antecedentes – Objetivos – Resultados: Desarrollo tecnológico para la desalación de agua salobre con generación híbrida de paneles solares y aerogeneradores; Desarrollo tecnológico para bombeo con energía fotovoltaica y eólica, empleando tanques elevados.

Escorrentía pluvial Uso eficiente del agua Productividad de las tierras Método de la línea clave Informes de proyectos INGENIERÍA Y TECNOLOGÍA

Diagnóstico de los artículos científicos publicados en la Unidad de Recursos Naturales del CICY

JOSE LUIS HERNANDEZ STEFANONI Fernando de Jesús Tun Dzul DANIELA HUDA TARHUNI NAVARRO MIRIAM BEATRIZ JUAN QUI VALENCIA (2022, [Artículo])

Se presenta un diagnóstico estratégico de la productividad de artículos científicos publicados entre 2010 y 2021 de la Unidad de Recursos Naturales del CICY. Los resultados muestran que se publican entre 9 y 11 artículos por año en cada línea de investigación, que corresponden a 3 artículos por investigador por año. Otra fortaleza está en la formación de recursos humanos ya que entre el 40 y 71% de los artículos de autor por correspondencia el primer autor es un estudiante. Sin embargo, se tendría que mejorar la productividad de artículos como primer autor o autor de correspondencia. Adicionalmente, el impacto de los artículos publicados es similar al de la media nacional. Finalmente, esta información permite identificar las áreas de oportunidad y las fortalezas en cada línea de investígación.

ARTICULOS CIENTIFICOS DIAGNOSTICO IMPACTO ACADEMICO INDICADORES LINEAS DE INVESTIGACION BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

GENERAL STUDY OF CLASSICAL AND NONCLASSICAL CONTRIBUTIONS OF TWO PHOTON ABSORPTION PROCESS IN ORGANIC MOLECULES

Freiman Estiven Triana Arango (2023, [Tesis de doctorado])

"Two-photon absorption (TPA), a nonlinear optical phenomenon, is gaining attention for applications like laser scanning, microscopy, and therapy. Recent research explores entangled two photon absorption (ETPA) using correlated photons but faces debates regarding its magnitude and detection. This study introduces a novel method using changes in Hong-Ou-Mandel (HOM) interferogram visibility to probe ETPA's presence. It employs Rhodamine B dye and entangled photons at around 800nm to investigate conditions conducive to observing ETPA-induced changes. This innovative approach distinguishes genuine ETPA signals from linear optical losses often masquerading as ETPA effects, addressing a significant field challenge."

Two-photon absorption Entangled two-photon absorption Hong-Ou-Mandel HOM dip visibility Joint Spectral Intensity Entangled photons CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA FÍSICA ÓPTICA OPTICA NO LINEAL OPTICA NO LINEAL

Teacher training in the state of Chihuahua: Between the health challenge and teacher resilience

Evangelina Cervantes Holguín Pavel Roel Gutiérrez Sandoval Cely Celene Ronquillo Chávez (2023, [Artículo, Artículo])

 

The article proposes to recover the response of the Teacher Training and Updating Institutions in the state of Chihuahua regarding the various challenges imposed by the Coronavirus Disease (COVID-19). The qualitative exercise analyzes the experience of 10 institutions based on the voice of their students, teachers, and principals regarding changes in academic, administrative, and organizational processes. It is concluded that the pandemic has affected each institution in different ways and with diverse intensity. Despite the achievements, the experience analyzed reveals the relative success of the using virtual platforms in the face of three basic conditions: connectivity, technological competencies, and socio-emotional skills of the teaching staff. It highlights the importance of implementing tutoring, resilience, or awareness actions of teachers and students' needs, feelings, and sufferings. It is opportune to recover the experiences of other institutions and to question especially students, thesis students and graduates.

Acceso a la educación Aprendizaje en línea Educación a distancia Formación de docentes Tecnología educacional HUMANIDADES Y CIENCIAS DE LA CONDUCTA HUMANIDADES Y CIENCIAS DE LA CONDUCTA Access to education online learning distance education teacher education educational technology

Big data, small explanatory and predictive power: Lessons from random forest modeling of on-farm yield variability and implications for data-driven agronomy

Martin van Ittersum (2023, [Artículo])

Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers’ fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers’ fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.

Model Accuracy Model Precision Linear Mixed Models CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MACHINE LEARNING SUSTAINABLE INTENSIFICATION BIG DATA YIELDS MODELS AGRONOMY