Búsqueda avanzada


Área de conocimiento




78 resultados, página 8 de 8

How diverse are farming systems on the Eastern Gangetic Plains of South Asia? A multi-metric and multi-country assessment

Brendan Brown Pragya Timsina Emma Karki (2023, [Artículo])

While crop diversification has many benefits and is a stated government objective across the Eastern Gangetic Plains (EGP) of South Asia, the complexity of assessment has led to a rather limited understanding on the progress towards, and status of, smallholder crop diversification. Most studies focus on specific commodities or report as part of a singular index, use outdated secondary data, or implement highly localized studies, leading to broad generalisations and a lack of regional comparison. We collected representative primary data with more than 5000 households in 55 communities in Eastern Nepal, West Bengal (India) and Northwest Bangladesh to explore seasonally based diversification experiences and applied novel metrics to understand the nuanced status of farm diversification. While 66 crops were commercially grown across the region, only five crops and three crop families were widely grown (Poaceae, Malvaceae, and Brassicaceae). Non-cereal diversification across the region was limited (1.5 crops per household), though regional differentiation were evident particularly relating to livestock and off-farm activities, highlighting the importance of cross border studies. In terms of farmer's largest commercial plots, 20% of systems contained only rice, and 57% contained only rice/wheat/maize, with substantial regional diversity present. This raises concerns regarding the extent of commercially oriented high value and non-cereal diversification, alongside opportunities for diversification in the under-diversified pre-monsoon and monsoon seasons. Future promotional efforts may need to focus particularly on legumes to ensure the future sustainability and viability of farming systems.

Agricultural Production Systems Farming Systems Change CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL PRODUCTION CROPPING SYSTEMS DIVERSIFICATION FARMING SYSTEMS SUSTAINABLE INTENSIFICATION

Climate-smart agricultural practices influence the fungal communities and soil properties under major agri-food systems

madhu choudhary ML JAT Parbodh Chander Sharma (2022, [Artículo])

Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical–chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice–wheat rotation, ScII is partial CA-based rice–wheat–mungbean, ScIII is partial CSA-based rice–wheat–mungbean, ScIV is partial CSA-based maize–wheat–mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.

Agriculture Management Fungal Community Diversity Indices Climate-Smart Agricultural Practices CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURE TILLAGE CLIMATE-SMART AGRICULTURE SOIL ORGANIC CARBON

Historical use of water resources. Civil works evolution in Zacatecas state

Carlos Bautista-Capetillo Georgia González-Pérez Hiram Badillo-Almaraz (2021, [Artículo, Artículo])

Availability and demand are essential aspects for the human being when planning is made to provide water to the different sectors that may have need of it; still, the demand of suitable volume of water increases day by day, while the supply decreases gradually. In this inverse relationship, anthropogenic and environmental dynamics are decisive to guarantee the needs of the population, specifically due to the climatic transformations evidenced in recent decades. Throughout history, the state of Zacatecas has suffered the ravages of extreme environmental events, mainly those related to drought. Likewise, but on a lesser extent, severe floods have occurred that have caused socioeconomic damage. In this work, the climatic variations of temperature and precipitation and their influence on the evolution of hydraulic systems for the supply of drinking water in the municipality of Nochistlán de Mejía, Zacatecas are analyzed during the period 1930-2015.

drinking water supply historical development of waterworks climate and its transformations Abasto de agua potable desarrollo histórico de obras hidráulicas clima y sus transformaciones CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA

Escenarios futuros de eventos extremos de precipitación y temperatura en México

Future changes of precipitation and temperature extremes in Mexico

Ernesto Ramos Esteban (2024, [Tesis de maestría])

Diferentes estudios a escala mundial indican un incremento en frecuencia de eventos climáticos extremos debido al calentamiento global y sugieren que podrían intensificarse en el futuro. El objetivo de este trabajo es analizar los posibles cambios de 12 índices climáticos extremos (ICE) de precipitación y temperatura en 15 regiones de México, el sur de los Estados Unidos y Centroamérica para un período histórico (1981-2010), un futuro cercano (2021-2040), un futuro intermedio (2041-2060) y un futuro lejano (2080-2099). Se utilizó el reanálisis ERA5 como referencia en la evaluación histórica de los modelos climáticos globales (MCG) y para las proyecciones se analizaron los ICE de diez MCG del Proyecto de Intercomparación de Modelos Climáticos, fase 6 (CMIP6), de acuerdo con dos escenarios de Vías Socioeconómicas Compartidas (SSPs), uno de bajas emisiones (SSP2-4.5) y otro de altas emisiones (SSP3-7.0). Los MCG reproducen muy bien los índices extremos de temperatura histórica y los días consecutivos secos, pero subestiman la lluvia promedio y la lluvia extrema en las zonas más lluviosas desde el centro de México hasta Centroamérica. Históricamente, se observaron tendencias positivas de las temperaturas extremas (TXx y TNn) en todas las regiones, pero sólo en algunas regiones fueron significativas, mientras que los índices de lluvia extrema (R95p, R10mm y R20mm) presentaron tendencias negativas, pero pequeñas. Las proyecciones indican que las temperaturas extremas podrían seguir incrementándose en el futuro, desde 2° C hasta 5° C a mitad y final de siglo, respectivamente. La contribución de la precipitación extrema arriba del percentil 95 (R95p) se podría incrementar entre un 10 % y 30 %, especialmente en la región subtropical, mientras que la precipitación podría disminuir en las regiones tropicales. Este estudio es el primero que analiza los cambios futuros de índices extremos del CMIP6 a escala regional (en 15 regiones) de México, el sur de Estados Unidos y Centroamérica.

Global-scale studies indicate an increase in the frequency of extreme weather events due to global warming and suggest that they could further intensify in the future. This study aims to assess potential changes in 12 extreme climate indices (ECI) related to precipitation and temperature in 15 regions in Mexico, the southern United States, and Central America for different periods: a historical period (1981-2010), a near future (2021-2040), an intermediate future (2041-2060), and a far future (2080-2099). The ERA5 reanalysis was used as a reference for the historical evaluation of global climate models (GCMs), and ECI from ten GCMs of phase 6 (CMIP6) from the Coupled Model Intercomparison Project were employed for the projections and examined under two Shared Socioeconomic Pathways (SSPs) scenarios, one characterized by low emissions (SSP2-4.5) and another representing high greenhouse gas emissions (SSP3-7.0). The GCMs reproduce historical extreme temperature indices and consecutive dry days very well. However, they underestimate average and extreme rainfall from central Mexico to Central America in the wetter areas. Historically, positive trends in extreme temperatures (TXx and TNn) were observed across all regions. However, statistical significance was only present in certain regions, while extreme rainfall indices (R95p, R10mm, and R20mm) exhibited small negative trends. The projections suggest that extreme temperatures could continue to increase in the future, from 2°C to 5°C by the mid and late century, respectively. The contribution of extreme precipitation above the 95th percentile (R95p) could increase by 10% to 30%, particularly in the subtropical regions, while precipitation might decrease in tropical regions. This study is the first to analyze future changes in extreme indices from CMIP6 at a regional scale (across 15 regions) in Mexico, the southern United States, and Central America.

Centroamérica, CMIP6, escenarios SSP, extremos climáticos, intercomparación de modelos climáticos, México Central America, climate extremes, CMIP6, intercomparison of climate models, Mexico, SSP scenarios CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA FÍSICA (VE R 5603 .04) OCEANOGRAFÍA FÍSICA (VE R 5603 .04)

Assessing the Response of Nematode Communities to Climate Change-Driven Warming: A Microcosm Experiment

RUTH GINGOLD WERMUTH (2013, [Artículo])

Biodiversity has diminished over the past decades with climate change being among the main responsible factors. One consequence of climate change is the increase in sea surface temperature, which, together with long exposure periods in intertidal areas, may exceed the tolerance level of benthic organisms. Benthic communities may suffer structural changes due to the loss of species or functional groups, putting ecological services at risk. In sandy beaches, free-living marine nematodes usually are the most abundant and diverse group of intertidal meiofauna, playing an important role in the benthic food web. While apparently many functionally similar nematode species co-exist temporally and spatially, experimental results on selected bacterivore species suggest no functional overlap, but rather an idiosyncratic contribution to ecosystem functioning. However, we hypothesize that functional redundancy is more likely to observe when taking into account the entire diversity of natural assemblages. We conducted a microcosm experiment with two natural communities to assess their stress response to elevated temperature. The two communities differed in diversity (high [HD] vs. low [LD]) and environmental origin (harsh vs. moderate conditions). We assessed their stress resistance to the experimental treatment in terms of species and diversity changes, and their function in terms of abundance, biomass, and trophic diversity. According to the Insurance Hypothesis, we hypothesized that the HD community would cope better with the stressful treatment due to species functional overlap, whereas the LD community functioning would benefit from species better adapted to harsh conditions. Our results indicate no evidence of functional redundancy in the studied nematofaunal communities. The species loss was more prominent and size specific in the HD; large predators and omnivores were lost, which may have important consequences for the benthic food web. Yet, we found evidence for alternative diversity-ecosystem functioning relationships, such as the Rivets and the Idiosyncrasy Model. © 2013 Gingold et al.

aquaculture, article, bacterivore, benthos, biodiversity, biomass, climate, community dynamics, controlled study, ecosystem, environmental temperature, microcosm, nematode, nonhuman, population abundance, species diversity, species richness, taxonomy CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA

Contrasting spatial patterns in active-fire and fire-suppressed mediterranean climate old-growth mixed conifer forests

Danny L. Fry  (2014, [Artículo])

In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha-1, and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

article, climate, controlled study, ecosystem fire history, forest structure, geographic distribution, geographic mapping, land use, mathematical computing, mathematical model, Mexico, spatial analysis, taiga, United States, comparative study, conife CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA