Filtrar por:
Tipo de publicación
- Artículo (132)
- Tesis de maestría (112)
- Tesis de doctorado (47)
- Documento de trabajo (33)
- Artículo (13)
Autores
- DENISE SOARES (4)
- ANA MARIA SANDOVAL VILLASANA (3)
- Alison Bentley (3)
- Bekele Abeyo (3)
- César Calderón Mólgora (3)
Años de Publicación
Editores
- Centro de Investigaciones y Estudios Superiores en Antropología Social (51)
- CICESE (22)
- Instituto Mexicano de Tecnología del Agua (15)
- Universidad Autónoma de Ciudad Juárez (9)
- Universidad de Guanajuato (9)
Repositorios Orígen
- Repositorio institucional del IMTA (59)
- REPOSITORIO INSTITUCIONAL DEL CIESAS (51)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (40)
- Repositorio Institucional CICESE (32)
- Repositorio Institucional del Centro de Investigación en Química Aplicada (31)
Tipos de Acceso
- oa:openAccess (360)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- INGENIERÍA Y TECNOLOGÍA (98)
- CIENCIAS SOCIALES (97)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (60)
- BIOLOGÍA Y QUÍMICA (59)
- QUÍMICA (55)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Generación de energía eléctrica a partir del tratamiento de aguas residuales por medio de bioceldas
EDSON BALTAZAR ESTRADA ARRIAGA (2013, [Documento de trabajo])
Actualmente, la recuperación de bioenergía (electricidad, metano e hidrógeno) a través de las aguas residuales, ya sean de origen industrial o municipal, ha despertado un gran interés en la comunidad científica. En este informe, se presenta la forma como la bioconversión de la material orgánica presente en el agua residual puede generar energía eléctrica y a su vez reducir la carga orgánica de las aguas residuales.
Energía eléctrica Tratamiento de aguas residuales Celdas de combustible microbianas Informes de proyectos INGENIERÍA Y TECNOLOGÍA
ULISES DEHESA CARRASCO José Javier Ramírez Luna Pedro Rivera Ruiz Eduardo Venegas Reyes (2019, [Documento de trabajo])
RD1718.6
El objetivo del presente proyecto se enfoca en el estudio de la factibilidad del uso de la nanofiltración u osmosis inversa de baja presión, alimentada con energía solar fotovoltaica para el tratamiento de agua subterránea salobre destinada al riego agrícola en zonas rurales del estado de Zacatecas, México, donde la salinidad de los mantos acuíferos sub-superficiales limita las actividades agrícolas.
Riego Desalación Nanofiltración Ósmosis inversa Energía solar Estudios de factibilidad INGENIERÍA Y TECNOLOGÍA
Adaptación y transferencia de tecnología para medición en pozos de bombeo en zonas agrícolas
VICTOR MANUEL RUIZ CARMONA (2014, [Documento de trabajo])
Tabla de contenido: 1. Introducción – 2. Definición de eficiencia – 3. Equipo de medición, adquisición de datos y cálculo – 4. Configuración y programación de la UTR Lassen – 5. Prueba del equipo desarrollado.
1. Introducción – 2. Definición de eficiencia – 3. Equipo de medición, adquisición de datos y cálculo – 4. Configuración y programación de la UTR Lassen – 5. Prueba del equipo desarrollado.
Estaciones de bombeo Eficiencia energética Transferencia de tecnología Informes de proyectos INGENIERÍA Y TECNOLOGÍA
Roberto Ignacio Galdames Coloma (2023, [Tesis de maestría])
"Los grupos AA a través de rituales, un discurso común en la tribuna, la práctica del apadrinamiento, la solidaridad promovida y un código de relacionamiento, establecen un contexto en el cual las acciones de cuidado entre hombres son socialmente permitidas y valoradas. El objetivo central de esta investigación es analizar de qué manera los participantes del grupo de Alcohólicos Anónimos "Unión" producen y reproducen prácticas de cuidado, incluyendo relaciones de afecto y sostén emocional con otros hombres y explorar que impacto tiene estos en sus subjetividades".
Alcoholismo - Tratamiento - Oaxaca, México. Alcohólicos anónimos - Estudio de casos - Oaxaca, México. Alcohólicos - Rehabilitación - Oaxaca, México. Tesis - Maestría en Antropología Social, Pacífico Sur. CIENCIAS SOCIALES SOCIOLOGÍA PROBLEMAS SOCIALES ENFERMEDAD ENFERMEDAD
Mariela de Jesús Franco Gallegos (2023, [Tesis de maestría])
Los catalizadores basados en nanopartículas de oro han generado gran interés, gracias a su capacidad de ser selectivos en la promoción de reacciones específicas o en la producción de productos deseados, minimizando la formación de productos secundarios no deseados; sus propiedades electrónicas únicas; y su utilización bajo condiciones ambientales. Sin embargo, la desventaja principal de los catalizadores de oro es la sinterización de las nanopartículas debido a su baja temperatura de fusión, lo que provoca la pérdida de actividad catalítica y la desactivación del catalizador. Una de lassoluciones que ofrece el uso de la nanociencia y la nanotecnología es la utilización de soportes nanoestructurados que den mejor estabilidad a las nanopartículas y las protejan de la desactivación. En este trabajo se sintetizaron catalizadores basados en nanopartículas de oro soportados y encapsulados en alúmina macroporosa, por un método de impregnación húmeda asistida por ultrasonido; un método sencillo, rápido y ecológico. El desempeño catalítico de materiales sintetizados se analizó mediante espectroscopía UV-Visible in-situ en la reducción de 4-Nitrofenol a 4-Aminofenol. Así mismo, se presentan las caracterizaciones por TEM, SEM, FT-IR, espectroscopía UV-Visible, y XRD de catalizadores obtenidos. Se obtuvieron catalizadores altamente activos con alto rendimiento gracias al uso de un soporte nanoestructurado.
Catalysts -based on gold nanoparticles have recently gained interest due to their ability to selectively promote specific catalytic reactions or produce desired products, while minimizing the formation of unwanted byproducts, their unique electronic properties, and their utilization under ambient conditions. However, the main drawback of gold catalysts is the sintering of nanoparticles due to their low melting temperature, which leads to loss of catalytic activity and catalyst deactivation. One of the solutions offered by nanoscience and nanotechnology is the use of nanostructured supports that provide better stability to the nanoparticles and protect them from deactivation. In this work, gold nanoparticle-based catalysts supported and encapsulated in macroporous alumina were synthesized using a simple, fast, and eco-friendly method of ultrasound-assisted wet impregnation. The catalytic performance of synthetized materials was evaluated by in-situ UV-Visible spectroscopy in the reduction of 4-Nitrophenol to 4-Aminophenol. In addition, their characterization by TEM, SEM, FT-IR, UV Visible spectroscopy and XRD are presented. Highly active catalysts with high performance were obtained thanks to the use of a nanostructured supports.
nanopartículas de oro, alúmina macroporosa, impregnación, reducción 4-NF gold nanoparticles, macroporous alumina, impregnation, 4-NF reduction INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE MATERIALES PROPIEDADES DE LOS MATERIALES PROPIEDADES DE LOS MATERIALES
REAL TIME EMBBEDED RGB-D SLAM USING CNNS FOR DEPTH ESTIMATION AND FEATURE EXTRACTION
Marcos Renato Rocha Hernández (2023, [Tesis de maestría])
"A robust and efficient Simultaneous Localization and Mapping (SLAM) system is essential for intelligent mobile robots to work in unknown environments. For visual SLAM algorithms, though the theoretical framework has been well established for most aspects, feature extraction and association is still empirically de signed in most cases, and can be vulnerable in complex environments. Also, most of the most robust SLAM algorithms rely on special devices like a stereo camera or depth sensors, which can be expensive and give more complexity to the system, that is why monocular depth estimation is an essential task in the computer vision community. This work shows that feature extraction and depth estimation using a monocular camera with deep convolutional neural networks (CNNs) can be incorporated into a modern SLAM framework. The proposed SLAM system utilizes two CNNs, one to detect keypoints in each im age frame, and to give not only keypoint descriptors, but also a global descriptor of the whole image and the second one to make depth estimations from a single image frame, all using only a monocular camera."
SLAM Inteligencia Artificial CNN Sistemas embebidos Redes neuronales Cámara monocular INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES INTELIGENCIA ARTIFICIAL INTELIGENCIA ARTIFICIAL
A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm.
Ali Mirzazadeh Afshin Azizi Yousef Abbaspour_Gilandeh José Luis Hernández-Hernández Mario Hernández Hernández Iván Gallardo Bernal (2021, [Artículo])
Estimation of crop damage plays a vital role in the management of fields in the agricultura sector. An accurate measure of it provides key guidance to support agricultural decision-making systems. The objective of the study was to propose a novel technique for classifying damaged crops based on a state-of-the-art deep learning algorithm. To this end, a dataset of rapeseed field images was gathered from the field after birds¿ attacks. The dataset consisted of three classes including undamaged, partially damaged, and fully damaged crops. Vgg16 and Res-Net50 as pre-trained deep convolutional neural networks were used to classify these classes. The overall classification accuracy reached 93.7% and 98.2% for the Vgg16 and the ResNet50 algorithms, respectively. The results indicated that a deep neural network has a high ability in distinguishing and categorizing different image-based datasets of rapeseed. The findings also revealed a great potential of Deep learning-based models to classify other damaged crops.
rapeseed classification damaged crops deep neural networks INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Sajad Sabzi Razieh Pourdarbani Mohammad Hossein Rohban Alejandro Fuentes_Penna José Luis Hernández-Hernández Mario Hernández Hernández (2021, [Artículo])
Improper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present paper was to identify excess nitrogen in cucumber plants. To obtain a reliable result, the majority voting method was used, which takes into account the unanimity of five classifiers, namely, the hybrid artificial neural network¿imperialism competitive algorithm (ANN-ICA), the hybrid artificial neural network¿harmonic search (ANN-HS) algorithm, linear discrimination analysis (LDA), the radial basis function network (RBF), and the Knearest- neighborhood (KNN). The wavelengths of 723, 781, and 901 nm were determined as optimal wavelengths using the hybrid artificial neural network¿biogeography-based optimization (ANNBBO) algorithm, and the performance of classifiers was investigated using the optimal spectrum. The results of a t-test showed that there was no significant difference in the precision of the algorithm when using the optimal wavelengths and wavelengths of the whole range. The correct classification rate of the classifiers ANN-ICA, ANN-HS, LDA, RBF, and KNN were 96.14%, 96.11%, 95.73%, 64.03%, and 95.24%, respectively. The correct classification rate of majority voting (MV) was 95.55% for test data in 200 iterations, which indicates the system was successful in distinguishing nitrogen-rich leaves from leaves with a standard content of nitrogen.
artificial neural network cucumber hyperspectral imaging majority voting nitrogen INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ALIMENTOS
Tensile behavior of 3D printed polylactic acid (PLA) based composites reinforced with natural fiber
Eliana M Agaliotis BALTAZAR DAVID AKE CONCHA ALEJANDRO MAY PAT Juan Pablo Morales Arias Celina Bernal Alex Valadez González Pedro Jesús Herrera Franco Gwenaelle Proust JUAN FRANCISCO KOH DZUL José Gonzalo Carrillo Baeza Emmanuel Alejandro Flores Johnson (2022, [Artículo])
Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers. © 2022 by the authors.
POLYLACTIC ACID (PLA) NATURAL FIBER HENEQUEN FIBER NATURAL FIBER REINFORCED COMPOSITE (NFRC) ADDITIVE MANUFACTURING 3D PRINTING MECHANICAL PROPERTY INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE MATERIALES PROPIEDADES DE LOS MATERIALES PROPIEDADES DE LOS MATERIALES
Control de sistemas usando aprendizaje de máquina
Systems control using machine learning
Jesús Martín Miguel Martínez (2023, [Tesis de maestría])
El aprendizaje por refuerzo es un paradigma del aprendizaje de máquina con un amplio desarrollo y una creciente demanda en aplicaciones que involucran toma de decisiones y control. Es un paradigma que permite el diseño de controladores que no dependen directamente del modelo que describe la dinámica del sistema. Esto es importante ya que en aplicaciones reales es frecuente que no se disponga de dichos modelos de manera precisa. Esta tesis tiene como objetivo implementar un controlador óptimo en tiempo discreto libre de modelo. La metodología elegida se basa en algoritmos de aprendizaje por refuerzo, enfocados en sistemas con espacios de estado y acción continuos a través de modelos discretos. Se utiliza el concepto de función de valor (Q-función y función V ) y la ecuación de Bellman para resolver el problema del regulador cuadrático lineal para un sistema mecánico masa-resorte-amortiguador, en casos donde se tiene conocimiento parcial y desconocimiento total del modelo. Para ambos casos las funciones de valor son definidas explícitamente por la estructura de un aproximador paramétrico, donde el vector de pesos del aproximador es sintonizado a través de un proceso iterativo de estimación de parámetros. Cuando se tiene conocimiento parcial de la dinámica se usa el método de aprendizaje por diferencias temporales en un entrenamiento episódico, que utiliza el esquema de mínimos cuadrados con mínimos cuadrados recursivos en la sintonización del crítico y descenso del gradiente en la sintonización del actor, el mejor resultado para este esquema es usando el algoritmo de iteración de valor para la solución de la ecuación de Bellman, con un resultado significativo en términos de precisión en comparación a los valores óptimos (función DLQR). Cuando se tiene desconocimiento de la dinámica se usa el algoritmo Q-learning en entrenamiento continuo, con el esquema de mínimos cuadrados con mínimos cuadrados recursivos y el esquema de mínimos cuadrados con descenso del gradiente. Ambos esquemas usan el algoritmo de iteración de política para la solución de la ecuación de Bellman, y se obtienen resultados de aproximadamente 0.001 en la medición del error cuadrático medio. Se realiza una prueba de adaptabilidad considerando variaciones que puedan suceder en los parámetros de la planta, siendo el esquema de mínimos cuadrados con mínimos cuadrados recursivos el que tiene los mejores resultados, reduciendo significativamente ...
Reinforcement learning is a machine learning paradigm with extensive development and growing demand in decision-making and control applications. This technique allows the design of controllers that do not directly depend on the model describing the system dynamics. It is useful in real-world applications, where accurate models are often unavailable. The objective of this work is to implement a modelfree discrete-time optimal controller. Through discrete models, we implemented reinforcement learning algorithms focused on systems with continuous state and action spaces. The concepts of value-function, Q-function, V -function, and the Bellman equation are employed to solve the linear quadratic regulator problem for a mass-spring-damper system in a partially known and utterly unknown model. For both cases, the value functions are explicitly defined by a parametric approximator’s structure, where the weight vector is tuned through an iterative parameter estimation process. When partial knowledge of the dynamics is available, the temporal difference learning method is used under episodic training, utilizing the least squares with a recursive least squares scheme for tuning the critic and gradient descent for the actor´s tuning. The best result for this scheme is achieved using the value iteration algorithm for solving the Bellman equation, yielding significant improvements in approximating the optimal values (DLQR function). When the dynamics are entirely unknown, the Q-learning algorithm is employed in continuous training, employing the least squares with recursive least squares and the gradient descent schemes. Both schemes use the policy iteration algorithm to solve the Bellman equation, and the system’s response using the obtained values was compared to the one using the theoretical optimal values, yielding approximately zero mean squared error between them. An adaptability test is conducted considering variations that may occur in plant parameters, with the least squares with recursive least squares scheme yielding the best results, significantly reducing the number of iterations required for convergence to optimal values.
aprendizaje por refuerzo, control óptimo, control adaptativo, sistemas mecánicos, libre de modelo, dinámica totalmente desconocida, aproximación paramétrica, Q-learning, iteración de política reinforcement learning, optimal control, adaptive control, mechanical systems, modelfree, utterly unknown dynamics, parametric approximation, Q-learning, policy iteration INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES INTELIGENCIA ARTIFICIAL INTELIGENCIA ARTIFICIAL