Filtros
Filtrar por:
Tipo de publicación
- Artículo (6)
Autores
- Abdelfattah DABABAT (1)
- CARLOS ABRAHAM GUERRERO RUIZ (1)
- Colin Hughes (1)
- DAVID ALBERTO RODRIGUEZ TRAPERO (1)
- ENRIQUE JURADO YBARRA (1)
Años de Publicación
Editores
- Alberto Amato, IRIG-CEA Grenoble, France (1)
- Dongsheng Zhou, Beijing Institute of Microbiology and Epidemiology, China (1)
- Heather M. Patterson, Department of Agriculture and Water Resources, Australia (1)
- Universidad de Concepción (1)
Repositorios Orígen
- Repositorio Institucional CICESE (3)
- Repositorio IPICYT (1)
- Repositorio Institucional CICY (1)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (1)
Tipos de Acceso
- oa:openAccess (6)
Idiomas
- eng (5)
Materias
- BIOLOGÍA VEGETAL (BOTÁNICA) (3)
- BIOLOGÍA Y QUÍMICA (3)
- CIENCIAS DE LA VIDA (3)
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (2)
- GENÉTICA (2)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
6 resultados, página 1 de 1
GABRIELA AVILES PERAZA Erik Koenen Ricarda Riina Colin Hughes Jens Ringelberg GERMAN CARNEVALI FERNANDEZ CONCHA Ivón Mercedes Ramírez Morillo Lilia Lorena Can Itza Iván Tamayo-Cen Jorge Humberto Ramírez Prado Xavier Cornejo Sawai Mattapha RODRIGO STEFANO DUNO (2022, [Artículo])
Following recent mimosoid phylogenetic and phylogenomic studies demonstrating the non-monophyly of the genus Albizia, we present a new molecular phylogeny focused on the neotropical species in the genus, with much denser taxon sampling than previous studies. Our aims were to test the monophyly of the neotropical section Arthrosamanea, resolve species relationships, and gain insights into the evolution of fruit morphology. We perform a Bayesian phylogenetic analysis of sequences of nuclear internal and external transcribed spacer regions and trace the evolution of fruit dehiscence and lomentiform pods. Our results find further support for the non-monophyly of the genus Albizia, and confirm the previously proposed segregation of
Hesperalbizia, Hydrochorea, Balizia and Pseudosamanea. All species that were sampled from section Arthrosamanea form a clade that is sister to a clade composed of Jupunba, Punjuba, Balizia and Hydrochorea. We find that lomentiform fruits are independently derived from indehiscent septate fruits in both Hydrochorea and section Arthrosamanea. Our results show that morphological adaptations to hydrochory, associated with shifts into seasonally flooded habitats, have occurred several times independently in different geographic areas and different lineages within the ingoid clade. This suggests that environmental conditions have likely played a key role in the evolution of fruit types in Albizia and related genera. We resurrect the name Pseudalbizzia to accommodate the species of section Arthrosamanea, except for two species that were not sampled here but have been shown in other studies to be more closely related to other ingoid genera and we restrict the name Albizia s.s. to the species from Africa, Madagascar, Asia, Australia, and the Pacific. Twenty-one new nomenclatural combinations in Pseudalbizzia are proposed, including 16 species and 5 infraspecific varietal names. In addition to the type species Pseudalbizzia berteroana, the genus has 17 species distributed across tropical regions of the Americas, including the Caribbean. Finally, a new infrageneric classification into five sections is proposed and a distribution map of the species of Pseudalbizzia is presented.
ARTHROSAMANEA HYDROCHORY MONOPHYLY NEOTROPICS PHYLOGENY TAXONOMY BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) TAXONOMÍA VEGETAL TAXONOMÍA VEGETAL
Samad Ashrafi Abdelfattah DABABAT Maria Finckh Marc Stadler Wolfgang Maier (2023, [Artículo])
Plant Parasitic Nematodes Nematode's Egg Parasites CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ENDOPHYTES NEMATOPHAGOUS FUNGI NEW SPECIES PHYLOGENY PLANT NEMATODES TAXONOMY
ENRIQUE JURADO YBARRA Joel David Flores Rivas Jonathan Marroquín MARISELA PANDO MORENO DAVID ALBERTO RODRIGUEZ TRAPERO Humberto González Rodríguez José Alejandro Selvera Mancha Juan Ángel López Carmona (2022, [Artículo])
"Competition and facilitation are important factors affecting seedling survival. These factors probably affect plant distribution and abundance. Interactions between species relate to phylogeny, in that closely related species are likely to compete more for resources and facilitation is expected between more distantly related species. We tested for Tamaulipan thornscrub plants, grown with close and distant relatives if they differed in survival, length and weight of shoots and roots, assuming that closely related species would compete more than distant ones. We also explored whether seed mass was associated with plant size from 1-24 months after germination. We grew plants from Tamaulipan thornscrub, with a sibling or with one individual from other species from 1-24 months. Seedling survival was similar for all species when their seedlings grew alone or under competition, at 1, 6 and 12 months. At 24 months seedling survival of Vachellia farnesiana was lower when grown with Havardia pallens. There was no evidence of stronger competition or facilitation for phylogenetically closer species. Seedling size correlated with seed mass one month after germination but not after 6 months. Maximum and mean adult plant height did not correlate with seed mass or with plant height in our trials. We found no evidence of phylogeny explaining nearest neighbors in competition during germination for Tamaulipan thornscrub."
"La competencia y la facilitación son factores importantes que afectan la supervivencia de las plántulas y probablemente afectan la distribución y abundancia de las plantas. Las interacciones entre especies se relacionan con la filogenia, es probable que las especies estrechamente relacionadas compitan más por recursos y que en las menos emparentadas ocurra facilitación. Se investigó si plantas de matorral tamaulipeco creciendo junto a parientes cercanos y lejanos diferían en supervivencia, longitud y peso de tallos y raíces, asumiendo que las especies estrechamente relacionadas competirían más que las lejanas. También se exploró si el peso de semillas se asoció con el tamaño de la planta entre 1 y 24 meses de edad. Se pusieron a crecer plantas de matorral tamaulipeco, con un hermano o con un individuo de otras especies, de 1-24 meses. La supervivencia de plántulas fue similar para todas las especies cuando éstas crecieron solas o en competencia, a los 1, 6 y 12 meses. A los 24 meses, la supervivencia de plántulas de Vachellia farnesiana fue menor cuando creció con Havardia pallens. No hubo evidencia de una competencia o facilitación fuerte para especies filogenéticamente más cercanas. El tamaño de la plántula se correlacionó con el peso de la semilla únicamente al mes de germinadas. La altura máxima y promedio de la planta adulta no se correlacionó con el peso de semillas o con la altura de la planta. La filogenia no explicó la competencia con los vecinos más cercanos durante la germinación de especies del matorral tamaulipeco."
Phylogeny Seed mass Seedling Shoot/root ratio Tamaulipan thornscrub BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) BIOLOGÍA VEGETAL (BOTÁNICA)
CARLOS ABRAHAM GUERRERO RUIZ (2017, [Artículo])
Vibrio parahaemolyticus is an important human pathogen that has been isolated worldwide from clinical cases, most of which have been associated with seafood consumption. Environmental and clinical toxigenic strains of V. parahaemolyticus that were isolated in Mexico from 1998 to 2012, including those from the only outbreak that has been reported in this country, were characterized genetically to assess the presence of the O3:K6 pandemic clone, and their genetic relationship to strains that are related to the pandemic clonal complex (CC3). Pathogenic tdh+ and tdh+/trh+ strains were analyzed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Also, the entire genome of a Mexican O3:K6 strain was sequenced. Most of the strains were tdh/ORF8-positive and corresponded to the O3:K6 serotype. By PFGE and MLST, there was very close genetic relationship between ORF8/O3:K6 strains, and very high genetic diversities from non-pandemic strains. The genetic relationship is very close among O3:K6 strains that were isolated in Mexico and sequences that were available for strains in the CC3, based on the PubMLST database. The whole-genome sequence of CICESE-170 strain had high similarity with that of the reference RIMD 2210633 strain, and harbored 7 pathogenicity islands, including the 4 that denote O3:K6 pandemic strains. These results indicate that pandemic strains that have been isolated in Mexico show very close genetic relationship among them and with those isolated worldwide. © 2017 Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, bacterial strain, biofouling, controlled study, Crassostrea, food intake, gene sequence, genetic analysis, genetic variability, Japan, Mexican, Mexico, molecular phylogeny, nonhuman, pandemic, pathogenicity island, sea food, serotyping, toxi BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA GENÉTICA GENÉTICA
OMAR VALENCIA MENDEZ (2018, [Artículo])
Gobies are the most diverse marine fish family. Here, we analysed the gamma-diversity (γ-diversity) partitioning of gobiid fishes to evaluate the additive and multiplicative components of α and β-diversity, species replacement and species loss and gain, at four spatial scales: sample units, ecoregions, provinces and realms. The richness of gobies from the realm Eastern Tropical Pacific (ETP) is represented by 87 species. Along latitudinal and longitudinal gradients, we found that the γ-diversity is explained by the β-diversity at both spatial scales, ecoregions and provinces. At the ecoregion scale, species are diverse in the north (Cortezian ecoregion) and south (Panama Bight ecoregion) and between insular and coastal ecoregions. At the province scale, we found that the species turnover between the warm temperate Northeast Pacific (WTNP), Tropical East Pacific (TEaP) and the Galapagos Islands (Gala) was high, and the species nestedness was low. At the ecoregion scale, historical factors, and phylogenetic factors have influenced the hotspots of gobiid fish biodiversity, particularly in the Cortezian, Panama Bight and Cocos Island ecoregions, where species turnover is high across both latitudinal and longitudinal gradients. At the provincial level, we found that the contributions of the β-diversity from north to south, in the WTNP, TEaP and Gala were high, as result of the high number of unique species. Species turnover was also high at this scale, with a low contribution from species nestedness that was probably due to the low species/gene flow within the provinces. These results highlight the importance and successful inclusion of a cryptobenthic fish component in ecological and biogeographical studies. © 2018 Valencia-Méndez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Article, biodiversity, biogeographic region, biogeography, gene flow, goby fish, nonhuman, phylogeny, species distribution, species diversity, taxonomic identification, teleost, animal, animal dispersal, fish, Pacific Ocean, phylogeography, Animal Di CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS PECES Y FAUNA SILVESTRE PECES Y FAUNA SILVESTRE
Sonia Quijano (2020, [Artículo])
Pseudo-nitzschia is a cosmopolitan genus, some species of which can produce domoic acid (DA), a neurotoxin responsible for the Amnesic Shellfish Poisoning (ASP). In this study, we identified P. subpacifica for the first time in Todos Santos Bay and Manzanillo Bay, in the Mexican Pacific using SEM and molecular methods. Isolates from Todos Santos Bay were cultivated under conditions of phosphate sufficiency and deficiency at 16°C and 22°C to evaluate the production of DA. This toxin was detected in the particulate (DAp) and dissolved (DAd) fractions of the cultures during the exponential and stationary phases of growth of the cultures. The highest DA concentration was detected during the exponential phase grown in cells maintained in P-deficient medium at 16°C (1.14 ± 0.08 ng mL-1 DAd and 4.71 ± 1.11 × 10−5 ng cell-1 of DAp). In P-sufficient cultures DA was higher in cells maintained at 16°C (0.25 ± 0.05 ng mL-1 DAd and 9.41 ± 1.23 × 10−7 ng cell-1 of DAp) than in cells cultured at 22°C. Therefore, we confirm that P. subpacifica can produce DA, especially under P-limited conditions that could be associated with extraordinary oceanographic events such as the 2013–2016 "Blob" in the northeastern Pacific Ocean. This event altered local oceanographic conditions and possibly generated the presence of potential harmful species in areas with economic importance on the Mexican Pacific coast. © 2020 Quijano-Scheggia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
domoic acid, domoic acid, kainic acid, Article, cell growth, controlled study, diatom, Mexico, morphology, nonhuman, Pacific Ocean, phylogeny, plant cell, plant growth, Pseudo nitzschia, toxin analysis, cell culture technique, classification, diatom, CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA