Filtrar por:
Tipo de publicación
- Event (4582)
- Artículo (1053)
- Dataset (932)
- Tesis de maestría (736)
- Tesis de doctorado (380)
Autores
- Servicio Sismológico Nacional (IGEF-UNAM) (4582)
- Thomas Payne (298)
- Fernando Nuno Dias Marques Simoes (250)
- Ravi Singh (204)
- Jose Crossa (98)
Años de Publicación
Editores
- UNAM, IGEF, SSN, Grupo de Trabajo (4582)
- International Maize and Wheat Improvement Center (644)
- Cenoteando, Facultad de Ciencias, UNAM (cenoteando.mx) (249)
- Instituto Mexicano de Tecnología del Agua (193)
- El autor (122)
Repositorios Orígen
- Repositorio de datos del Servicio Sismológico Nacional (4582)
- Repositorio Institucional de Datos y Software de Investigación del CIMMYT (682)
- Repositorio institucional del IMTA (503)
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (426)
- COLECCIONES DIGITALES COLMEX (368)
Tipos de Acceso
- oa:openAccess (8277)
- oa:embargoedAccess (11)
- oa:Computación y Sistemas (1)
Idiomas
Materias
- Sismología (13746)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (5150)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (4631)
- GEOFÍSICA (4585)
- SISMOLOGÍA Y PROSPECCIÓN SÍSMICA (4584)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system
Alison Laing Akbar Hossain (2023, [Artículo])
The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS
C.M. Parihar Hari Sankar Nayak Renu Pandey ML JAT (2021, [Artículo])
Biological Yield Permanent Beds Yield Attributes CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA YIELDS NITROGEN NUTRIENT UPTAKE CROP PERFORMANCE MAIZE
Unpacking the intra-household decision-making process among wheat growers in Bihar, India
Hom Nath Gartaula (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT CROP MANAGEMENT SMALLHOLDERS GENDER HOUSEHOLDS
Gatien Falconnier Marc Corbeels Frédéric Baudron Antoine Couëdel leonard rusinamhodzi bernard vanlauwe Ken Giller (2023, [Artículo])
Can farmers in sub-Saharan Africa (SSA) boost crop yields and improve food availability without using more mineral fertilizer? This question has been at the center of lively debates among the civil society, policy-makers, and in academic editorials. Proponents of the “yes” answer have put forward the “input reduction” principle of agroecology, i.e. by relying on agrobiodiversity, recycling and better efficiency, agroecological practices such as the use of legumes and manure can increase crop productivity without the need for more mineral fertilizer. We reviewed decades of scientific literature on nutrient balances in SSA, biological nitrogen fixation of tropical legumes, manure production and use in smallholder farming systems, and the environmental impact of mineral fertilizer. Our analyses show that more mineral fertilizer is needed in SSA for five reasons: (i) the starting point in SSA is that agricultural production is “agroecological” by default, that is, very low mineral fertilizer use, widespread mixed crop-livestock systems and large crop diversity including legumes, but leading to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen needs of crops cannot be adequately met solely through biological nitrogen fixation by legumes and recycling of animal manure, (iii) other nutrients like phosphorus and potassium need to be replaced continuously, (iv) mineral fertilizers, if used appropriately, cause little harm to the environment, and (v) reducing the use of mineral fertilizers would hamper productivity gains and contribute indirectly to agricultural expansion and to deforestation. Yet, the agroecological principles directly related to soil fertility—recycling, efficiency, diversity—remain key in improving soil health and nutrient-use efficiency, and are critical to sustaining crop productivity in the long run. We argue for a nuanced position that acknowledges the critical need for more mineral fertilizers in SSA, in combination with the use of agroecological practices and adequate policy support.
Manure Crop Yields Smallholder Farming Systems Environmental Hazards CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOLOGICAL NITROGEN FIXATION LEGUMES NUTRIENT BALANCE SOIL FERTILITY AGROECOLOGY YIELD INCREASES LITERATURE REVIEWS
Agricultural emissions reduction potential by improving technical efficiency in crop production
Arun Khatri-Chhetri Tek Sapkota sofina maharjan Paresh Shirsath (2023, [Artículo])
CONTEXT: Global and national agricultural development policies normally tend to focus more on enhancing farm productivity through technological changes than on better use of existing technologies. The role of improving technical efficiency in greenhouse gas (GHG) emissions reduction from crop production is the least explored area in the agricultural sector. But improving technical efficiency is necessary in the context of the limited availability of existing natural resources (particularly land and water) and the need for GHG emission reduction from the agriculture sector. Technical efficiency gains in the production process are linked with the amount of input used nd the cost of production that determines both economic and environmental gains from the better use of existing technologies. OBJECTIVE: To assess a relationship between technical efficiency and GHG emissions and test the hypothesis that improving technical efficiency reduces GHG emissions from crop production. METHODS: This study used input-output data collected from 10,689 rice farms and 5220 wheat farms across India to estimate technical efficiency, global warming potential, and emission intensity (GHG emissions per unit of crop production) under the existing crop production practices. The GHG emissions from rice and wheat production were estimated using the CCAFS Mitigation Options Tool (CCAFS-MOT) and the technical efficiency of production was estimated through a stochastic production frontier analysis. RESULTS AND CONCLUSIONS: Results suggest that improving technical efficiency in crop production can reduce emission intensity but not necessarily total emissions. Moreover, our analysis does not support smallholders tend to be technically less efficient and the emissions per unit of food produced by smallholders can be relatively high. Alarge proportion of smallholders have high technical efficiency, less total GHG emissions, and low emissions intensity. This study indicates the levels of technical efficiency and GHG emission are largely influenced by farming typology, i.e. choice and use of existing technologies and management practices in crop cultivation. SIGNIFICANCE: This study will help to promote existing improved technologies targeting GHG emissions reduction from the agriculture production systems.
Technical Efficiency Interventions CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MITIGATION PRODUCTIVITY CROP PRODUCTION GREENHOUSE GAS EMISSIONS
ML JAT Rajeev Gupta (2022, [Artículo])
Decomposition Rate Nitrogen Release Placement Effect CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROP RESIDUES DEGRADATION NITROGEN PLACEMENT
Análisis de la dinámica del monzón de Norteamérica usando modelos globales y regionales
SALVADOR CASTILLO LIÑAN (2021, [Tesis de maestría])
Maestro en Ciencias y Tecnología del Agua - Hidrometeorología) -- Instituto Mexicano de Tecnología del Agua. Coordinación de Desarrollo Profesional e Institucional. Subcoordinación de Posgrado.
El Monzón de Norteamérica (NAM) es un sistema atmosférico intraestacional causante de aproximadamente el 70% de las precipitaciones anuales en el noroeste de México y suroeste de Estados Unidos. Su estudio utilizando modelos numéricos es un reto debido a la compleja dinámica asociada a la abrupta orografía y al contraste térmico océano-continente que contribuyen a su desarrollo durante el verano. A pesar de que la gran mayoría de los modelos globales del experimento CMIP5 (Proyecto de Intercomparación de Modelos Acoplados), logran describir el periodo intraestacional de precipitaciones máximas sobre el dominio del NAM y reproducir su variabilidad espacial y temporal, se han identificado sesgos en las simulaciones con respecto a las observaciones y los datos de Reanálisis. Con el propósito de abordar estos sesgos, así como identificar y explicar el inicio-final del monzón, en este estudio se analiza el papel de los mecanismos entre la atmósfera, del continente y el océano, utilizando simulaciones numéricas regionales generadas con el modelo sueco RCA4 (Rossby Centre regional atmospheric model 4), el cual fue forzado con 10 modelos globales del CMIP5.
Monzón de Norteamérica Modelación numérica Precipitaciones INGENIERÍA Y TECNOLOGÍA
Agricultural value chains in Sudan: an annotated bibliography
Hugo De Groote Paswel Marenya (2023, [Libro])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AGRICULTURAL VALUE CHAINS CASH CROPS FOOD CROPS LIVESTOCK SOCIOECONOMIC ASPECTS GENDER SOCIAL INCLUSION POSTHARVEST LOSSES BIBLIOGRAPHIES
Christian Thierfelder Blessing Mhlanga Hambulo Ngoma Paswel Marenya Md Abdul Matin Adane Tufa (2024, [Artículo])
Production and utilization of crop residues as mulch and effective weed management are two central elements in the successful implementation of Conservation Agriculture (CA) systems in southern Africa. Yet, the challenges of crop residue availability for mulch or the difficulties in managing weed proliferation in CA systems are bigger than a micro-level focus on weeds and crop residues themselves. The bottlenecks are symptoms of broader systemic complications that cannot be resolved without appreciating the interactions between the current scientific understanding of CA and its application in smallholder systems, private incentives, social norms, institutions, and government policy. In this paper, we elucidate a series of areas that represent some unquestioned answers about chemical weed control and unanswered questions about how to maintain groundcover demanding more research along the natural and social sciences continuum. In some communities, traditional rules that allow free-range grazing of livestock after harvesting present a barrier in surface crop residue management. On the other hand, many of the communities either burn, remove, or incorporate the residues into the soil thus hindering the near-permanent soil cover required in CA systems. The lack of soil cover also means that weed management through soil mulch is unachievable. Herbicides are often a successful stopgap solution to weed control, but they are costly, and most farmers do not use them as recommended, which reduces efficacy. Besides, the use of herbicides can cause environmental hazards and may affect human health. Here, we suggest further assessment of the manipulation of crop competition, the use of vigorously growing cover crops, exploration of allelopathy, and use of microorganisms in managing weeds and reducing seed production to deplete the soil weed seed bank. We also suggest in situ production of plant biomass, use of unpalatable species for mulch generation and change of grazing by-laws towards a holistic management of pastures to reduce the competition for crop residues. However, these depend on the socio-economic status dynamics at farmer and community level.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA INTEGRATED CROP-LIVESTOCK SYSTEMS CROP RESIDUES ZERO TILLAGE SOCIAL NORMS SUSTAINABLE INTENSIFICATION WEED CONTROL
UTTAM KUMAR Rajeev Ranjan Kumar Philomin Juliana Sundeep Kumar (2022, [Artículo])
Genomic Selection Single-Trait Genomic Selection Multi-Trait Genomic Selection Genomic Estimated Breeding Value Climate-Resilient Crops CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MARKER-ASSISTED SELECTION CLIMATE CHANGE STRESS CLIMATE RESILIENCE CROPS ABIOTIC STRESS BIOTIC STRESS