Búsqueda avanzada


Área de conocimiento




Filtrar por:

Tipo de publicación

Autores

Años de Publicación

Editores

Repositorios Orígen

Tipos de Acceso

Idiomas

Materias

Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales

112 resultados, página 3 de 10

Landscape and micronutrient fertilizer effect on agro-fortified wheat and teff grain nutrient concentration in western Amhara

Tilahun Amede Elizabeth Bailey Abdul Wahab Mossa Dereje Tirfessa MESFIN KEBEDE DESTA Getachew Agegnehu Tesfaye Shiferaw Sida Stephan Haefele R. Murray Lark Martin Broadley Samuel Gameda (2023, [Artículo])

Agronomic biofortification, encompassing the use of mineral and organic nutrient resources which improve micronutrient concentrations in staple crops is a potential strategy to promote the production of and access to micronutrient-dense foods at the farm level. However, the heterogeneity of smallholder farming landscapes presents challenges on implementing agronomic biofortification. Here, we test the effects of zinc (Zn)- and selenium (Se)-containing fertilizer on micronutrient concentrations of wheat (Triticum aestivum L.) and teff (Eragrostis tef (Zucc.) Trotter) grown under different landscape positions and with different micronutrient fertilizer application methods in the western Amhara region of Ethiopia. Field experiments were established in three landscape positions at three sites, with five treatments falling into three broad categories: (1) nitrogen (N) fertilizer rate; (2) micronutrient fertilizer application method; (3) sole or co-application of Zn and Se fertilizer. Treatments were replicated across five farms per landscape position and over two cropping seasons (2018 and 2019). Grain Zn concentration ranged from 26.6 to 36.4 mg kg−1 in wheat and 28.5–31.2 mg kg−1 in teff. Grain Se concentration ranged from 0.02 to 0.59 mg kg−1 in wheat while larger concentrations of between 1.01 and 1.55 mg kg−1 were attained in teff. Larger concentrations of Zn and Se were consistently attained when a foliar fertilizer was applied. Application of ⅓ nitrogen (N) yielded significantly larger grain Se concentration in wheat compared to a recommended N application rate. A moderate landscape effect on grain Zn concentration was observed in wheat but not in teff. In contrast, strong evidence of a landscape effect was observed for wheat and teff grain Se concentration. There was no evidence for any interaction of the treatment contrasts with landscape position except in teff, where an interaction effect between landscape position and Se application was observed. Our findings indicate an effect of Zn, Se, N, landscape position, and its interaction effect with Se on grain micronutrient concentrations. Agronomic biofortification of wheat and teff with micronutrient fertilizers is influenced by landscape position, the micronutrient fertilizer application method and N fertilizer management. The complexity of smallholder environmental settings and different farmer socio-economic opportunities calls for the optimization of nutritional agronomy landscape trials. Targeted application of micronutrient fertilizers across a landscape gradient is therefore required in ongoing agronomic biofortification interventions, in addition to the micronutrient fertilizer application method and the N fertilizer management strategy.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA BIOFORTIFICATION LANDSCAPE SELENIUM ZINC WHEAT

Wheat seed demand assessment assisted by genotyping in Ethiopia

Moti Jaleta Kindie Tesfaye Olaf Erenstein (2023, [Artículo])

This study examines the extent to which wheat varieties supplied by the formal seed system align with the varieties demanded and used by farmers in Ethiopia. The framework of stated and revealed preferences drawn from the consumer preference theory is used to analyze farmer demand for different wheat varieties. We used official data from the formal seed sector and representative survey data from wheat farm households in Ethiopia. The survey data allow to contrast the farmer reported varietal use with genotyping by sequencing (also known as DNA fingerprinting). Farmers' reliance on informal seed sources and own saved seed, among others, contributes to the misidentification of the varieties they grow. Consequently, farmers are likely to misinform the formal seed demand assessment leading to either an over- or underestimation of actual seed demand for specific wheat varieties. Genotyping by sequencing, as opposed to farmer reports, established the persistence of old varieties. This also implies vulnerability of wheat production to disease dynamics depending on the longevity of disease resistance by the variety in use. Apart from narrowing the gap between the actual and stated demand and ensuring timely replacement of wheat varieties, genotyping-assisted estimates can save seed carry-over cost. Genotyping by sequencing is increasingly used as the new benchmark and gold standard for identifying and tracking the adoption of crop varieties. The technique has potential to enhance the performance of the seed sector through effective planning that can optimize resource commitments and accelerate the rate of varietal replacement.

Seed Demand Varietal Replacement CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GENOTYPING-BY-SEQUENCING SEEDS WHEAT