Filtrar por:
Tipo de publicación
- Artículo (56)
- Tesis de maestría (22)
- Artículo (7)
- Capítulo de libro (4)
- Libro (2)
Autores
- Rajeev Varshney (3)
- CAIXIA LAN (2)
- Cesar Petroli (2)
- Frédéric Baudron (2)
- Govindan Velu (2)
Años de Publicación
Editores
- El autor (14)
- CICESE (8)
- Universidad Autónoma Metropolitana (México). (5)
- Universidad Autónoma de Ciudad Juárez (4)
- Universidad Autónoma de Ciudad Juárez. Instituto de Arquitectura, Diseño y Arte (3)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (30)
- Repositorio Digital CIDE (12)
- Repositorio Institucional CICESE (12)
- Repositorio Institucional Zaloamati (7)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (7)
Tipos de Acceso
- oa:openAccess (90)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (35)
- CIENCIAS SOCIALES (33)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (13)
- HUMANIDADES Y CIENCIAS DE LA CONDUCTA (13)
- CIENCIAS DE LA TIERRA Y DEL ESPACIO (11)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Jingyang Tong Ming Li xianchun xia Zhonghu He Yong Zhang (2023, [Artículo])
Grain Yield KASP Marker QTL Mapping SNP Chip CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA GRAIN YIELDS QUANTITATIVE TRAIT LOCI MAPPING SINGLE NUCLEOTIDE POLYMORPHISMS WHEAT BREEDING
XUECAI ZHANG Yong Zhang (2022, [Artículo])
Fusarium Head Blight Resistance Fusarium verticillioides QTL Mapping Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FUSARIUM QUANTITATIVE TRAIT LOCI MAPPING TRITICUM AESTIVUM
Using homosoils for quantitative extrapolation of soil mapping models
Andree Nenkam Alexandre Wadoux Budiman Minasny Alex McBratney Pierre C. Sibiry Traore Gatien Falconnier Anthony Whitbread (2022, [Artículo])
Cubist Digital Soil Mapping Model-Based Validation Soil Spatial Variation Soil-Forming Factors CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA LAND USE ORGANIC CARBON SOIL SURVEYS SPATIAL VARIATIONS
CAMILO ANDRES RODRIGUEZ NIETO (2021, [Tesis de doctorado])
Consejo Nacional de Ciencia y Tecnología No. 602990
In research in Mathematics Education, models have been reported to analyze mathematical connections in which specific connection categories are considered. In the literature, it was identified that the most used model is the Businskas with contributions from other researchers. However, the problem refers to the fact that some categories of connections limit the analysis of mathematical activity and, therefore, the research suggests that the established categories are validated and, if possible, new categories of connections are reported. Other investigations focused on exploring mathematical connections and understanding the derivative reveal that high school students, pre-service teachers, and some in-service mathematics teachers have difficulty connecting multiple representations of the derivative (e.g., algebraic, or symbolic, verbal, graphic, tabular) and establish connections between partial meanings about this concept.
Networking of theories Mathematical connections Onto-semiotic approach semiotic function derivative teacher students HUMANIDADES Y CIENCIAS DE LA CONDUCTA PEDAGOGÍA TEORÍA Y MÉTODOS EDUCATIVOS TEORÍAS EDUCATIVAS
Gender analysis of household seed security : A case of maize and wheat seed systems in Nepal
Hom Nath Gartaula (2022, [Libro])
Seed Security Mountains CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SEED SYSTEMS MAIZE WHEAT ROLE OF WOMEN WOMEN'S PARTICIPATION
CANUTO MUÑOZ GARCIA ROSENDO CUICAS HUERTA JUAN GONZALEZ MALDONADO EFREN ESTRADA PAQUI ISIDRO JAUREGUI PLATA JULIO CESAR GOMEZ VARGAS (2023, [Artículo])
There is speculation about moon phases influencing animal reproductive performance. A study was carried out to shed light on the influence of moon phases on estrus presentation, pregnancy rate, calving presentation, and offspring sex in cows from the Mexican dry tropical region. The reproductive data of 580 crossbred cows from 2010 to 2021 was organized according to reproductive events (estrus presentation, gestation, calving presentation, and offspring sex) occurrence during moon phases (new moon, first quarter, full moon, and last quarter). The data were analyzed by Chi-squared test and logistic regression. The full moon reduced the estrus presentation (p0.05). It is concluded that the full moon reduces estrus presentation in crossbred cows. Moon phases do not influence the gestation, calving presentation, and offspring sex.
estrus calving offspring sex CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS CIENCIAS VETERINARIAS FISIOLOGÍA ANIMAL
Gopalareddy Krishnappa Govindan Velu (2023, [Artículo])
DArT-Seq Gene Mapping Yield Component Traits CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA WHEAT QUANTITATIVE TRAIT LOCI CANDIDATE GENES QUANTITATIVE TRAIT LOCI MAPPING YIELD COMPONENTS BIOFORTIFICATION
Reconocimiento continuo de la Lengua de Señas Mexicana
Continuous recognition of Mexican Sign Language
Ricardo Fernando Morfín Chávez (2023, [Tesis de maestría])
La Lengua de Señas Mexicana (LSM) es la lengua utilizada por la comunidad Sorda en México, y, a menudo, subestimada y pasada por alto por la comunidad oyente, lo que resulta en la exclusión sistemática de las personas Sordas en diversos aspectos de la vida. Sin embargo, la tecnología puede desempeñar un papel fundamental en acercar a la comunidad Sorda con la comunidad oyente, promoviendo una mayor inclusión y comprensión entre ambas. El objetivo principal de este trabajo es diseñar, implementar y evaluar un sistema de reconocimiento continuo de señas estáticas en LSM mediante, visión por computadora y técnicas de aprendizaje máquina. Se establecieron objetivos específicos, que incluyen la generación de un conjunto de datos de señas estáticas, pertenecientes al alfabeto manual de la LSM, el diseño de un modelo de reconocimiento, y la evaluación del sistema, tanto en la modalidad aislada como en la continua. La metodología involucra dos evaluaciones distintas. La primera se enfoca en el reconocimiento de señas estáticas en el dominio aislado, para ello se capturaron datos de 20 participantes realizando movimientos de la mano en múltiples ángulos. Se evaluaron diversas técnicas de aprendizaje automático, destacando que el enfoque basado en Máquinas de Soporte Vectorial (SVM) obtuvo los mejores resultados (F1-Score promedio del 0.91). La segunda evaluación se concentra en el reconocimiento continuo de señas estáticas, con datos recopilados de seis participantes con diferentes niveles de competencia en LSM, logrando un rendimiento sólido con errores cercanos al 7 %. Además, se evaluó la viabilidad del sistema en aplicaciones de tiempo real, demostrando un excelente desempeño (velocidad promedio de procesamiento de 45 cuadros por segundo). A pesar de los logros alcanzados, es importante reconocer que este proyecto se centró en el reconocimiento continuo de señas estáticas en LSM. Queda pendiente, como un desafío interesante, la exploración del reconocimiento continuo de señas dinámicas en LSM para futuras investigaciones. Se considera esencial explorar enfoques orientados a la escalabilidad y aplicaciones en tiempo real en investigaciones posteriores.
This study focuses on the continuous recognition of static signs in Mexican Sign Language (Lengua de Señas Mexicana (LSM)), the language used by the Deaf community in Mexico. Despite its significance, LSM is often underestimated and overlooked, leading to the systematic exclusion of Deaf individuals in various aspects of life. The primary objective of this work is to design, implement, and evaluate a continuous static sign recognition system in LSM using computer vision and machine learning techniques. Specific goals were established, including the creation of a dataset of static signs belonging to the manual alphabet of LSM, the design of a recognition model, and the evaluation of the system in both isolated and continuous modes. The methodology involves two distinct evaluations. The first one focuses on the recognition of static signs in the isolated domain, for which data from 20 participants performing hand movements at various angles were collected. Various machine learning techniques were evaluated, with the Máquinas de Soporte Vectorial (SVM)-based approach achieving the best results (average F1-Score of 0.91). The second evaluation centers on the continuous recognition of static signs, using data collected from six participants with varying levels of competence in LSM, achieving robust performance with errors close to 7 %. Furthermore, the feasibility of the system in real-time applications was assessed, demonstrating excellent performance (average processing speed of 45 frames per second). Despite the achievements, it is important to recognize that this project focused on continuous recognition of static signs in LSM. It remains an interesting challenge to explore the continuous recognition of dynamic signs in LSM for future research. It is considered essential to explore scalability-oriented approaches and real-time applications in subsequent investigations.
Lengua de Señas Mexicana (LSM), visión por computadora, aprendizaje automático, alfabeto manual de la LSM, reconocimiento automático de señas estáticas, reconocimiento aislado de señas, reconocimiento continuo de señas, aplicacion Mexican Sign Language (LSM), computer vision, machine learning, LSM manual alpahbet, automatic recognition of static signs, isolated sign recognition, continuous sign recognition, real-time aplications INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES ENSEÑANZA CON AYUDA DE ORDENADOR ENSEÑANZA CON AYUDA DE ORDENADOR
Jingyi Wang Chaonan Li Long Li Matthew Paul Reynolds Jizeng Jia Xinguo Mao Ruilian Jing (2023, [Artículo])
Association Analysis Elite Genetic Resources Map‐Based Clones Protein Phosphatase 2C CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DROUGHT GENETIC RESOURCES PROTEINS WHEAT WILTING
Mustafa Kamal Timothy Joseph Krupnik (2024, [Artículo])
High-resolution mapping of rice fields is crucial for understanding and managing rice cultivation in countries like Bangladesh, particularly in the face of climate change. Rice is a vital crop, cultivated in small scale farms that contributes significantly to the economy and food security in Bangladesh. Accurate mapping can facilitate improved rice production, the development of sustainable agricultural management policies, and formulation of strategies for adapting to climatic risks. To address the need for timely and accurate rice mapping, we developed a framework specifically designed for the diverse environmental conditions in Bangladesh. We utilized Sentinel-1 and Sentinel-2 time-series data to identify transplantation and peak seasons and employed the multi-Otsu automatic thresholding approach to map rice during the peak season (April–May). We also compared the performance of a random forest (RF) classifier with the multi-Otsu approach using two different data combinations: D1, which utilizes data from the transplantation and peak seasons (D1 RF) and D2, which utilizes data from the transplantation to the harvest seasons (D2 RF). Our results demonstrated that the multi-Otsu approach achieved an overall classification accuracy (OCA) ranging from 61.18% to 94.43% across all crop zones. The D2 RF showed the highest mean OCA (92.15%) among the fourteen crop zones, followed by D1 RF (89.47%) and multi-Otsu (85.27%). Although the multi-Otsu approach had relatively lower OCA, it proved effective in accurately mapping rice areas prior to harvest, eliminating the need for training samples that can be challenging to obtain during the growing season. In-season rice area maps generated through this framework are crucial for timely decision-making regarding adaptive management in response to climatic stresses and forecasting area-wide productivity. The scalability of our framework across space and time makes it particularly suitable for addressing field data scarcity challenges in countries like Bangladesh and offers the potential for future operationalization.
Synthetic Aperture Radar Random Forest Boro Rice In-Season Maps CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SAR (RADAR) RICE FLOODING CLIMATE CHANGE