Búsqueda avanzada


Área de conocimiento




92 resultados, página 6 de 10

Uso tradicional de plantas: patrimonio de las comunidades indígenas del Parque Nacional Lagunas de Montebello

NAYELY MARTINEZ MELENDEZ Manuel Martínez Meléndez JUANA PATRICIA HERNANDEZ RODRIGUEZ MAURICIO JOSE RIOS (2022, [Artículo])

El Parque Nacional Lagunas de Montebello en Chiapas (México) y su zona de influencia se caracterizan por ser áreas de gran diversidad biológica. Las comunidades indígenas de esta región usan las plantas como un recurso aprovechable que puede satisfacer sus necesidades. Nuestro objetivo fue documentar las especies de uso tradicional y de valor ecológico que las personas reconocen en su localidad. Se realizaron recorridos de campo y talleres comunitarios en los cuales identificamos 88 especies de plantas útiles, la mayoría árboles. Identificar la riqueza de especies del entorno en que viven, es una forma de encaminar acciones de desarrollo enfocadas en la conservación y el manejo de sus recursos forestales como medios de vida.

CHIAPAS ETNOBOTANICA MANEJO DE RECURSOS FORESTALES MUNICIPIO LA TRINITARIA BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA VEGETAL (BOTÁNICA) ECOLOGÍA VEGETAL ECOLOGÍA VEGETAL

Using an incomplete block design to allocate lines to environments improves sparse genome-based prediction in plant breeding

Osval Antonio Montesinos-Lopez ABELARDO MONTESINOS LOPEZ RICARDO ACOSTA DIAZ Rajeev Varshney Jose Crossa ALISON BENTLEY (2022, [Artículo])

Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. In plant breeding, it has the potential to increase the speed and reduce the cost of selection. However, to optimize resources, sparse testing methods have been proposed. A common approach is to guarantee a proportion of nonoverlapping and overlapping lines allocated randomly in locations, that is, lines appearing in some locations but not in all. In this study we propose using incomplete block designs (IBD), principally, for the allocation of lines to locations in such a way that not all lines are observed in all locations. We compare this allocation with a random allocation of lines to locations guaranteeing that the lines are allocated to

the same number of locations as under the IBD design. We implemented this benchmarking on several crop data sets under the Bayesian genomic best linear unbiased predictor (GBLUP) model, finding that allocation under the principle of IBD outperformed random allocation by between 1.4% and 26.5% across locations, traits, and data sets in terms of mean square error. Although a wide range of performance improvements were observed, our results provide evidence that using IBD for the allocation of lines to locations can help improve predictive performance compared with random allocation. This has the potential to be applied to large-scale plant breeding programs.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA Bayes Theorem Genome Inflammatory Bowel Diseases Models, Genetic Plant Breeding