Filtros
Filtrar por:
Tipo de publicación
- Artículo (56)
- Objeto de congreso (12)
- Libro (7)
- Capítulo de libro (6)
- Documento de trabajo (5)
Autores
- Paresh Shirsath (6)
- Tek Sapkota (5)
- Timothy Joseph Krupnik (5)
- ML JAT (4)
- Anil Pimpale (3)
Años de Publicación
Editores
- Universidad Autónoma Metropolitana (México). (3)
- Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. (2)
- Universidad Autónoma de Ciudad Juárez. Instituto de Arquitectura, Diseño y Arte (2)
- & (1)
- Atmospheric Research, New Zealand (1)
Repositorios Orígen
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (71)
- Repositorio Institucional CICESE (6)
- Repositorio Institucional Zaloamati (6)
- Repositorio Institucional CIBNOR (2)
- Repositorio Institucional de la Universidad Autónoma de Ciudad Juárez (2)
Tipos de Acceso
- oa:openAccess (90)
Idiomas
Materias
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (75)
- CLIMATE CHANGE (39)
- AGRICULTURE (13)
- FOOD SECURITY (9)
- CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA (8)
Selecciona los temas de tu interés y recibe en tu correo las publicaciones más actuales
Economics of crop residue management
Vijesh Krishna Maxwell Mkondiwa (2023, [Artículo])
More than five billion metric tons of agricultural residues are produced annually worldwide. Despite having multiple uses and significant potential to augment crop and livestock production, a large share of crop residues is burned, especially in Asian countries. This unsustainable practice causes tremendous air pollution and health hazards while restricting soil nutrient recycling. In this review, we examine the economic rationale for unsustainable residue management. The sustainability of residue utilization is determined by several economic factors, such as local demand for and quantity of residue production, development and dissemination of technologies to absorb excess residue, and market and policy instruments to internalize the social costs of residue burning. The intervention strategy to ensure sustainable residue management depends on public awareness of the private and societal costs of open residue burning.
Crop Biomass Residue Burning Environmental Effects CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CROPS BIOMASS RESIDUES ENVIRONMENTAL IMPACT CLIMATE CHANGE SMALLHOLDERS TECHNOLOGY ADOPTION
Prakash Kuchanur Ayyanagouda Patil Pervez Zaidi vinayan mt (2023, [Artículo])
Multi-Parental Synthetics Rapid Cycle Genomic Selection Phenotypic Correlation CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE HEAT STRESS MARKER-ASSISTED SELECTION DOUBLED HAPLOIDS PHENOTYPIC VARIATION CLIMATE CHANGE
Pervez Zaidi vinayan mt Sudha Nair Prakash Kuchanur Ayyanagouda Patil Atul Kulkarni Prasanna Boddupalli (2023, [Artículo])
Lowland Tropics CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE DROUGHT HEAT STRESS LOWLAND MAIZE VAPOUR PRESSURE DEFICIT
Sieglinde Snapp Yodit Kebede Eva Wollenberg (2023, [Artículo])
A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FOOD SUPPLY GAS EMISSIONS GREENHOUSE GASES FARMING SYSTEMS AGROECOLOGY FOOD SECURITY LESS FAVOURED AREAS SMALLHOLDERS YIELDS NUTRIENTS BIOLOGICAL PEST CONTROL CARBON SEQUESTRATION LEGUMES
Agricultura en tiempos de incertidumbre: ¿qué podemos hacer?
Jelle Van Loon (2022, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA FOOD SECURITY INFLATION FOOD PRICES AGRIFOOD SYSTEMS CLIMATE CHANGE SUSTAINABLE INTENSIFICATION
Establishment of heterotic groups for hybrid wheat breeding
Yunbi Xu (2022, [Artículo])
Genomic Prediction CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CLIMATE CHANGE CROPS FORECASTING PLANTS COMBINING ABILITY HETEROSIS HETEROTIC GROUPS MALE INFERTILITY PLANT HEIGHT WHEAT
Sonam Sherpa virender kumar Andrew Mcdonald (2024, [Artículo])
Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a −0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative ‘no burn’ residue management practices.
Soil Carbon Rice Residue Burning Life Cycle Assessment CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL CARBON RICE LIFE CYCLE GREENHOUSE GASES CLIMATE CHANGE
Editorial: Evolution of abiotic stress responses in land plants
Ana Luisa Garcia-Oliveira (2023, [Artículo])
Land Plants Molecular Responses Plant Stress Biology CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ABIOTIC STRESS TERRESTRIAL PLANTS CLIMATE CHANGE
Carbon credits from agriculture
A G ADEETH CARIAPPA (2023, [Objeto de congreso])
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CARBON AGRICULTURE CLIMATE CHANGE MITIGATION POLICIES